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CHAPTER OBJECTIVES

The classification analysis technique uses data with known group membership to create a model to
determine the data group with unknown group membership. It has been used in traditional Statistics. Many new
models similar to the classification analysis have been developed to train a computer for artificial intelligence.
All these models for classification are called models for 'supervised machine learning.! We introduce the

following in this chapter.

* Basic concepts of supervised machine learning and introduce classification analysis models in section 6.1.

* Decision tree model for categorical data in section 6.2.

* General Bayes classification model, a basic statistical classification analysis, and the naive Bayes
classification model for categorical data in section 6.2.

* Evaluation of classification model and comparison methods for several classification models.

6.1 Basic concepts of supervised machine learning
and classification

Supervised machine learning is a technique that uses data with known group affiliation to create a model
to determine the group of data whose group affiliation is unknown. It is called as discriminant analysis or
classification analysis in traditional statistics. In contrast, a technique that determines groups of similar data
using data with unknown group affiliation is called cluster analysis or unsupervised machine learning. A
supervised machine learning model is applied in various fields, such as when a doctor examines a patient and
classifies the patient's diagnosis based on the examination record, when spam mail is filtered out using email
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subject lines, and when a customer visiting a department store is identified as a customer who will purchase a

product.

A standard method to classify data whose group affiliation is unknown into a group would be to classify it
into the group that is the ‘closest’ to that data. Many methods define 'closeness' as being from one data source
to a group. For example, the Euclid distance from the data to the mean of each group, the Minkowski distance,
or the Mahalanobis distance, a statistical measure that considers the variance of the data, can be used. If we
consider a probabilistic approach, there may be a method to estimate the distribution function of each group
and classify data whose group affiliation is unknown into the group it is likely to belong to. There are many
classification models based on various reasonable criteria. In this chapter, we focus on statistical models for
discrete data, such as the decision tree model and the naive Bayes classification model. Chapter 7 discusses
other classification models for continuous data, such as the k-nearest neighbor model, the neural network

model, the support vector machine model, and the ensemble model.

Classification analysis procedure

Assume that there are K number of groups (or classes) and n1,n2,...,nk data were observed in each
group. Let @ = (z1,29,...,2,) be the observed data of the random variable X = (X1, Xo,...,Xp).

<Figure 6.1.1> shows the general process of the classification analysis.

Data cleaning and division
Collect data from each group, clean and transform it, and divide the
data into training and test data.

1

Training the model
Establish a classification model y = f(a) using the training data.

1

Validation of the model
Validate the classification model using the testing data.

Apply the model
Classify data whose group affiliation is unknown into one group using
the classification model.

<Figure 6.1.1> General process of classification analysis

First, data is collected, refined, and transformed appropriately for analysis. Then, the observed data in each
group is divided into training data and testing data. Using the training data, establish a classification model
y = f(x) where y is the target variable to be estimated, which means the group. The validity of the model is
examined using the testing data. If this model is not satisfactory, another model is established again, and its
validity is examined. After comparing several classification models and selecting the most satisfactory
classification model, this model is applied to data whose group is unknown to determine which group to
classify. If the variable that represents each group is considered as a dependent variable and the variable used to
classify each group is considered as an independent variable, classification analysis is similar to regression

analysis. However, in regression analysis, the dependent variable is a random variable that follows a normal
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distribution, and the levels of the independent variables are assumed to be given constants, but classification

analysis does not make this assumption, so there is a difference in the model.

Preparation of data for classification analysis

Data for classification analysis should be prepared in advance to improve classification accuracy,

efficiency, and scalability.
A. Data cleaning

If there is noise in the data, it is recommended to remove it. If there are missing values, it is recommended to

preprocess using the corresponding variable's average or mode.
B. Relevance analysis

Among the variables in the data, there may be variables that are not related to classification, or the variables
may be duplicated. Relevance analysis can be used to remove irrelevant or duplicated variables, improving the
classification model's efficiency and accuracy.

C. Data transformation

Continuous data may need to be discretized for classification. The neural network model requires converting

the units of variable values, such as from -1.0 to 1.0 or from 0.0 to 1.0.

6.1.1 Evaluation measures of classification model

Suppose there are two groups G1, G2, and there are n number of data whose group affiliation is known. If a
classification model is used to classify each data, the actual group of data and the group classified by the model

can be compared and summarized in Table 6.1.1.

Table 6.1.1 Table for the test results of the actual group and the classified group

Classified group

Gy G, Total
Actual group G1 fu fi2 fii + fi2
G fa f22 fa+ fo
Total n

Here, f;; means the number of data of the group G; classified into the group G;. The number of data correctly
classified out of the total data is f1; + fo2, and the number of data incorrectly classified is fi2 + for. The
accuracy of the classification model is defined as the ratio of the number of correctly classified data out of the
total number of data, and the error rate is defined as the ratio of the number of incorrectly classified data out

of the total number of data.

A fi1 + foo

ccuracy = ——————
n

Error rate = M
n

Generally, classification models strive to find an algorithm that maximizes accuracy or minimizes error
rate. Accuracy and error rate are reasonable criteria assuming that each data belongs to one group. However,

there is a possibility that one data belongs to more than one group, in which case it is reasonable to predict the
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probability of belonging to the group. There are various measures other than accuracy and error rate to evaluate
a classification model, and lift charts, ROC graphs, and statistical analysis methods are used to compare and

evaluate various classification models, which are explained in detail in Section 6.4.

6.1.2 Spliting method for training and testing data

To objectively evaluate a classification model, the entire data set is generally divided into training data
and testing data. The model is established using the training data, and the accuracy of the model is evaluated
using the testing data. If there is sufficient data, validation data is set aside to improve the performance of the

model. This section introduces commonly used methods for dividing training and testing data.

A. Holdout Method and Random Subsampling

The holdout method first divides the entire data set into two non-overlapping data sets and holding out one
as training data and the other as testing data. The holdout method is a widely used method in which a
classification model is established using the training data, and this model is applied to the testing data to
measure the accuracy (or error rate). The ratio at which training and test data are divided depends on the
researcher's judgment, but the most commonly used method is (1/2 training: 1/2 test) or (2/3 training: 1/3 test).
When extracting data at a determined ratio, a simple random sampling method without replacement is used to

reduce bias. The following should be noted when using the reserve method.

1) Since a portion of the entire data for which the group is known is reserved as test data, there is a risk that the
absolute number of training data for establishing the classification model will be small. In this case, the
classification model created with only the training data may not be as good as the model created using all
the data.

2) The classification model may vary depending on how the training and test data are divided. In general, the
smaller the number of training data, the greater the variance in the accuracy of the model. On the other
hand, as the number of training data increases, the reliability of the accuracy estimated from the test data
decreases.

3) Since the training and test data are subsets of the entire data set, they are not independent.

To solve the above problems and to increase the reliability of the accuracy of the classification model, the
preliminary method can be repeatedly performed. Each non-replaced sample is called a subsampling, and the
method of repeatedly extracting them is called the random subsampling method. If the accuracy of the
classification model by the i** subsampling is (Accuracy);, and this experiment is repeated r times, the overall

accuracy of the classification model is defined as the average of each accuracy as follows;
1 T
Overall accuarcy = —X7_, (Accuracy);
T

Since the random subsampling method does not use the entire data set, just like the holdout method, it still has
problems. However, since the accuracy of the model is repeatedly estimated, the reliability can be increased.

B. Cross Validation Method

The cross-validation method is a method that attempts to solve the problems of random subsampling. Like
the holdout method, the entire data set is first divided into training data and testing data. We create a model
using the training data and record the number of data correctly classified by the model using testing data. Then,
the roles of testing data and training data are swapped, and the number of correctly classified data is added up.
It is called the two-fold cross-validation method, and the accuracy of the model is calculated as the number of
data correctly classified in the entire data. The experiment is repeated r times in the same way to obtain the
average accuracy. In this method, each data is used once for training and again for testing, which can somewhat
solve the problem of random subsampling.
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If the two-fold cross-validation method is extended, the k-fold cross-validation method can be created.
This method divides the entire data set into k equal-sized subsets, reserves one of the subsets as testing data,
and uses the remaining data as training data to obtain the classification function. This method is repeated &
times so that each data subset can be used for testing once. The accuracy of the classification model is the

average of the measured accuracies.

In the cross-validation method, a special case where the total number of data is k, that is, when there is only
one testing data, is called the leave-one-out method. This method has the advantage of maximizing the
training data and testing all data without overlapping the test data. However, since each testing data contains
only one data, there is a disadvantage in that the variance of the estimated accuracy increases, and since the

experiment must be repeated as many times as the number of data, it takes a lot of time.

C. Bootstrap method

The methods described above extract the training data set from the entire data set without replacement, so
there is no identical data in the training and test data. The bootstrap method extracts the training data with
replacement. The data extracted once is not removed from the entire data set, and the next data is extracted.
When the total number of data is IV, and the bootstrap method extracts data, approximately 63.2% of the entire
data is extracted as training data. This is because the probability of each data being extracted as a bootstrap
sample is 1 — (1 — %)N , and this probability asymptotically converges to 1 — %= 0.632 if N is sufficiently
large. Samples not extracted by the bootstrap method are used as testing data. A classification model is
established using the data set extracted with replacement as training, and this model is applied to the testing
data to investigate the accuracy. The average of the accuracies measured by repeating similar experiments is

used as the model's overall accuracy.

6.2 Decision tree model

Decision tree is a tree-shaped drawing of a classification function consisting of decision rules, such as
<Figure 6.2.1> which classifies whether a customer visiting a computer store will purchase a computer.
Decision trees are widely used because they are easy to understand in terms of classification methods and easy

to explain results.

Decision Tree

Age

<Figure 6.2.1> A decision tree to classify a customer whether he buys or not

In the tree diagram above, the ovals colored yellow represent nodes that indicate tests for variables, and the top

node is called the root node. In <Figure 6.2.1>, Credit is the root node, and Gender and Age are nodes for
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testing variables. The branches from the nodes represent the values of the tested variables, and the rectangles
colored blue or red represent the final classified groups, which are called leaves. The root node, Credit, has
three branches 'Bad', 'Fair', and 'Good', and the classified group for 'Bad' credit is indicated by the leaf 'No'
which is the Non-purchasing group. In order to classify the data whose group is unknown, the variable values
of the data are examined along the path from the root node to the leaves. For example, in <Figure 6.2.1>, a
person whose 'Credit' is 'Good' and 'Age' is '30s' is classified as 'Yes', which is a Purchasing group. When the
target variable is a finite number of groups, such as Purchasing group or Non-purchasing group in the example
above, the tree for classification is called a decision tree. In the case of a continuous target variable, we can

draw a similar decision tree based on a regression model, which is called a regression tree (Breiman et al.).

The decision tree model was first attempted by Sonquist and Morgan in 1964 and was widely used by the
general public in 1973 because of Morgan and Messenger's algorithm called THAID. In 1980, Kass introduced
an algorithm called CHAID based on the chi-square goodness-of-fit test, which is still widely used today. In
1982, computer scientist Quinlan introduced a decision tree algorithm called ID3 and later developed it into an
algorithm called C4.5. In 1984, Breiman et al. established the theory of decision tree growth and pruning
through CART. C4.5 and CART are nonparametric classification methods, but in 1988, Loh and Vanichetaku
introduced FACT, a parametric approach. Recently, rather than classifying data as a single decision tree, an
ensemble model that extracts multiple samples using the bootstrap method and then integrates multiple
decision tree classifications based on these samples is widely used. The ensemble model is studied in Chapter
7.

6.2.1 Decision tree algorithm

The number of cases for making a decision tree is exponentially proportional to the number of variables and
values for each variable, so there are many cases. Some cases may have higher classification accuracy than
others, and some may have higher accuracy but take too much time. Therefore, many people have studied to
find an answer to the question, ‘How can we find an algorithm that is accurate and has reasonable calculation
time?’ A rational algorithm partitions a data set by making locally optimal decisions at each node's decision
point when deciding which variable to use. This method is applied sequentially to the partitioned data sets to
complete a decision tree to partition all data sets. In this section, we introduce an algorithm as an inductive

loop.

[Decision tree algorithm]: Inductive loop

TreeGrowth (E, F)
Step 1: if stopping_condition(E, F) = true then

Step 2: leaf = creatNode().

Step 3: leaf.label = Classify(E)

Step 4: return leaf

Step 5: else

Step 6: root = creatNode()

Step 7: root.test_condition = find_best_split(E, F)

Step 8: let V = {v : v is a possible outcome of root.test_condition}
Step 9: for eachv € V do

Step 10: E, ={ {root.test_condition(e) =} N {e € E}}

Step 11: child = TreeGrowth(E,, F)

Step 12: add child as descendent of root and label the edge(root — child) as v
Step 13: end for

Step 14: end if
Step 15: return root

The algorithm's input is training data E and a variable set F. In step 7 of the algorithm, the optimal variable for
splitting the data set is selected (find best split), and in steps 11 and 12, the tree is expanded (TreeGrowth).
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This process is repeated until the stopping condition of step 1 is satisfied. The entire algorithm process is

explained using an example.

6.2.2 Selection of a variable for branching

In classification using decision trees, deciding which variable to select for each node is crucial for better
classification. Various measures have been studied to choose variables for optimal branching. A common way
to select one variable among several variables would be to choose a variable that makes classification more

accurate for each branch when the variable is selected and branches out. Let's look at the following example.

Example 6.2.1 In a department store, 20 people who visited a particular store were surveyed, and 8
people (40%) were in the Purchasing group (G;) and 12 people (60%) were in the Non-purchasing group (
G,). The Gender and Credit Status of these 20 people were analyzed and a crosstable was created, as
shown in Table 6.2.1 and Table 6.2.2. Let's find out which variable has better branching in a decision

tree.
Table 6.2.1 Crosstable of Gender by Purchase and Non-purchasing group
Gender Purchasing group Non-purchasing group Total
G, G,
Male 4 6 10
Female 4 6 10
Total 8 12 20
Table 6.2.2 Crosstable of Credit status by Purchase and Non-purchasing group
Credit Status Purchasing group Non-purchasing group Total
G, G,
Good 7 3 10
Bad 1 9 10
Total 8 12 20
Answer

In the case of Gender, the ratios of the Purchasing group to the Non-purchasing group for Male and
Female are 4 to 6 (40% to 60%), which is the same as the ratio of all 20 people. In the case of Credit
Status, 90% of the customers are in the Non-purchasing group when the Credit Status is Bad, and 70% are
in the Purchasing group when the Credit Status is Good, so there is a significant difference in the
Purchase or Non-purchase ratio between Bad and Good cases. In other words, if the Credit Status of a
customer is Bad, there is a high possibility that he belongs to the Non-purchasing group, and if it is Good,
there is a high possibility that he belongs to the Purchasing group. So, if the Credit Status is identified,
we can distinguish the Purchasing group and the Non-purchasing group can be somewhat distinguished.
Therefore, if one of the two variables must be selected as a variable for branching in the decision tree,
choosing the Credit Status variable is reasonable for a more accurate classification. Generally, a variable
that has a lot of information for classification is selected.

Many studies have been conducted on how to select a reasonable variable, such as the example above,
using statistical methods. Currently, the most commonly used methods for variable selection in decision trees

include the chi-square independence test, entropy coefficient, Gini coefficient, and classification error rate.

A. Chi-square independence test

The chi-square independence test checks whether the distribution of each group for a variable is

independent or not. In Example 6.2.1, the Gender variable and Purchase status variable can be tested for
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independence, and the Credit Status variable and Purchase status variable can be tested for independence.
Suppose there are observed frequencies of a variable A, which are summarized in Table 6.2.3. In that case, the
expected frequencies when the variable A and the Purchase status variable are independent are calculated in
Table 6.2.4. The expected frequencies are calculated to make the ratios (%, %) of the Purchasing group and

the Non-purchasing group remain the same in each variable value.

Table 6.2.3 Observed frequencies of a variable A by Purchase status group

Variable A Purchasing group Non-purchasing group Total
value G, G,
Ay On O12 O:.
Ay (2% O 0.
Total 0,4 0, 0.

Table 6.2.4 Expected frequencies of a variable by Purchase status when they are independent

Variable A Purchasing group Non-purchasing group Total
value G, G,
Ay Ey =0 % % Eiy =0;. % % O,
Ay Ey =0, x 3t Eyp =05 x %2 O».
Total 04 0.5 0.

The chi-square statistic of the observed frequencies in Table 6.2.3 for independence test is the sum of the

squares of the differences between the observed and expected frequencies in each cell divided by the expected

frequency.

2 2 2
2 _ ZZ (Oij - Eij)
X" = — 5

=1 j=1 ij
This statistic follows the chi-square distribution with a degree of freedom of 1. Suppose the distribution of each
group in each variable value is the same as the distribution of the entire group. In that case, the chi-square
statistic becomes 0, concluding that the variables and groups are independent. Suppose the distribution of each
group in each variable value is very different from the distribution of the entire group. In that case, the chi-
square statistic becomes very large, and the null hypothesis that the variables and groups are independent is

rejected. The stronger the degree of rejection, the better the variable is for branching.

Example 6.2.2 Let's examine which variable is better for branching by using the chi-square independence
test for the Gender and Credit Status variable in Example 6.2.1.

Answer

In the crosstable of the Gender and Purchase status, the distribution of (purchasing group, non-
purchasing group) in the entire data is (40%, 60%). The distributions in each Male and female are also the
same at (40%, 60%), so the expected frequencies of Male and Female are (4, 6) which are the same as

observed frequencies and the chi-square statistic Xéendwis 0 as follows.

(-9 (6-6° , (447  (6-0° _

X%‘redit = 4 6 4 6 0

Therefore, the Gender variable and Purchase status are independent.

In the crosstable of the Credit and Purchase status, the expected frequencies for each Credit status is (4,
6), so the chi-square statistic is as follows.
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(-9, 3-0°, -9 ©-0° .

2
XCredit = 4 6 4 6

Therefore, since it is greater than the critical value of x}. ,(; = 3.841 at the significance level of 5% in

the chi-square distribution with the degree of freedom of 1, the Credit variable and Purchase status are
not independent. In other words, if the Credit status is known, it contains a lot of information to decide
the Purchasing group and the Non-purchasing group. Therefore, the branching is selected by selecting the
Credit variable rather than the Gender variable.

If a variable A has a number of values and a group variable has k number of groups, the chi-square statistic

of the a x k crosstable is as follows;
ek (0., — E..)2 0.
- M where Ej; = O; x =2

i=1 j=1 Eij 0.

This test statistic follows the chi-square distribution with (a — 1)(k — 1) degree of freedom. Since the number
of values of each variable can be different, the variable with the smaller p-value of the chi-square test is used

when selecting a variable to split in a decision tree.
B. Entropy coefficient, Gini coefficient, and classification error rate

The entropy coefficient, Gini coefficient, and classification error rate are similar concepts that measure the

uncertainty or purity of a distribution function. If there are k& number of groups, Gi,Gos,...,Gy, and
Pp1,P2,-- ., Pr are the probability distribution that the data belongs to each group, each measure is defined as
follows;

k
Entropy coefficient = — Zpi x logop; (define 0 x log,0 = 0)
=1
k
Gini coefficient = 1 — Z p?
i=1
Classification error rate = 1 — max{p1,p2, .- ., Dk}

To understand these three measures, let's look at the case where there are only two groups, that is k = 2. If the
probability of group 1 is p, then the probability of group 2 is 1 — p. In this case, the three measures become as

follows;

Entropy coefficient = —p x logap — (1 — p) X loga(1 — p)
Gini coefficient = 1 — p? — (1 — p)?
Classification error rate = 1 — maz{p,1 — p}

<Figure 6.2.2> shows graphs of three measures according to the value of p.
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fip)

Entropy

05 .
Gini

Classification error

<Figure 6.2.2> Entropy, Gini coefficient, and classification error when there are two groups

As we can see in the figure, all three measures have a maximum value when p = 0.5 (in this case, 1 — p=0.5
also, and it is a uniform distribution) and a minimum value of p = 0 when or p = 1. That is, when the
probability of two groups is the same (p = 0.5), uncertainty has a maximum value because we do not know
which group to classify into. On the other hand, if the probability of one group is 1, there is no uncertainty, that
is, the certainty of classification is 100%, so each measure has a minimum value of 0. Therefore, branching

selects a variable with less uncertainty.

Example 6.2.3 Find the entropy coefficient, Gini coefficient, and classification error rate for the
distribution of the Purchasing group and the Non-purchasing group (40%, 60%) in the entire data. Also,
find the entropy coefficient, Gini coefficient, and classification error rate for each Gender and Credit
Status, and examine which variable is good for branching.

Answer

The entropy coefficient, Gini coefficient, and classification error rate for the probability distribution
(0.4, 0.6) of the Purchasing group and the Non-purchasing group are as in Table 6.2.5, and the measures
for the Gender are in Table 6.2.6, and the measures for the Credit Status are in Table 6.2.7.

Table 6.2.5 Uncetainty measures for the distribution of (Purchase, Non-purchase) of entire data

Purchasing Non- Total Uncetainty measures
group purchasing
G, group
G»
Entire 6 12 20 Entropy coefficient = —0.4 x log20.4 — (1 — 0.4) x loga(1 — 0.4) = 0.9710

Gini coefficient = 1 — 0.4% — (1 — 0.4)* = 0.4800

data
Classification error rate = 1 — maz{0.4,1 — 0.4} = 0.4000

Table 6.2.6 Uncetainty measures for the distribution of (Purchase, Non-purchase) of Gender
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Gender Purchasing Non- Total Uncetainty measures
group purchasing
G1 group
G,
Male 4 6 10 Entropy coefficient = —0.4 x log,0.4 — (1 — 0.4) x logz(1 — 0.4) = 0.9710

Gini coefficient = 1 — 0.4% — (1 — 0.4)% = 0.4800
Classification error rate = 1 — maz{0.4,1 — 0.4} = 0.4000

Entropy coefficient = —0.4 x log,0.4 — (1 — 0.4) x logs(1 — 0.4) = 0.9710
Gini coefficient = 1 — 0.4% — (1 — 0.4)2 = 0.4800
Classification error rate = 1 — maz{0.4,1 — 0.4} = 0.4000

Female 4 6 10

Table 6.2.7 Uncetainty measures for the distribution of (Purchase, Non-purchase) of Credit Status data

Credit Purchasing Non- Total Uncetainty measures
Status group purchasing
G, group
Gs
Good 7 3 10 Entropy coefficient = —0.7 x log20.7 — (1 — 0.7) X loga(1 — 0.7) = 0.8813

Gini coefficient = 1 — 0.7 — (1 — 0.7)% = 0.4200
Classification error rate = 1 — maz{0.7,1 — 0.7} = 0.3000

Entropy coefficient = —0.1 x log50.1 — (1 — 0.1) X logs(1 — 0.1) = 0.4690
Gini coefficient = 1 — 0.1 — (1 — 0.1)® = 0.1800
Classification error rate = 1 — maz{0.1,1 — 0.1} = 0.1000

Bad 1 9 10

When looking at the uncertainty for the two variables, each attribute of Credit Status is relatively less
than the Gender attribute, so branching using Credit Status is reasonable.

Suppose there are k groups as G1,Ga,..., Gy and there are a number of attributes in variable A as
A1, Ay, ..., A, Let O;; be the observed frequency of the attribute A; and the group G, O;. be the sum of the
observed frequencies for the attribute A;, O.; be the sum of the observed frequencies for the group G, O.. be
the total number of data, and I(A4;) be the uncertainty of the attribute A; as summarized in Table 6.2.8.

Table 6.2.8 a x k frequency table and uncetainty measure of the variable A

Variable A Group G1 Group G2 .-+ Group G, Total Uncetainty
Ay On O12 aE Ok O I(Ay)
Ay On O e O3 O,. I(A,)
Aq Oa Oa2 e Oak O I(Aa)
Total 0.1 0., ‘.- O 0. Uncertainty of A
I(A)

The uncertainty of the variable A is the expected value of each attribute A; by weighting the proportion of the

observed frequency, %, as follows;
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O Oa. O..
I(A)zo—l><I(A1)+O—2><I(A2)+~--+ 5

x I(Aq)

If we do not know the information of the variable A, the uncertainty of this node 7', I(T), is the uncertainty
about the distribution of each group proportion. In the case of the entropy coefficient, it is as follows;

-3 (%) 1 (2)

In the decision tree, a variable for branching is selected if it has a large difference between the uncertainty of
the current node, I(T'), and the expected uncertainty of a variable A, I(A). This difference is called an
information gain and is expressed as A. The information gain at the current node 7' by branching into the

variable A is as follows;
A=I(T)-I(A)

The greater information gain of one variable implies that by branching into this variable, more uncertainty is
removed, and, therefore, more accurate classification is expected. The information gain obtained using the
entropy coefficient or Gini coefficient tends to prefer a variable with many variable values. In order to
overcome this problem, the information gain ratio, which is the information gain divided by the uncertainty

of the current node T is often used as the basis for branching.

Information gain ratio = ——
I(T)

Example 6.2.4 In Example 6.2.3, find the information gain for each measure of the Gender and Credit
Status variables.
Answer
Using the uncertainty values for each measure calculated in Example 6.2.3, the information gain for each
measure of the Gender variable is as follows;
. . 10 10
Information gain by entropy = 0.9710 — 0 % 0.9710 + 2 % 0.9710 ) = 0.0000

Information gain by Gini = 0.4800 — (% % 0.4800 + ;—8 X 0.4800> = 0.0000

Information gain by misclassification error = 0.4000 — <% % 0.4000 + % X 0.4000> = 0.0000

That is, since the Gender variable has the same uncertainty as the current node, there is no information
gain for classification that can be obtained by branching. The information gain for the Credit Status
variable is as follows;

10 10
Information gain by entropy = 0.9710 — <% % 0.8813 + 20 % 0.4690> = 0.2958
. . . 10 10
Information gain by Gini = 0.4800 — (% x 0.4200 + 20 X 0.1800> = 0.1800

Information gain by misclassification error = 0.4000 — <% % 0.3000 + % X 0.1000> = 0.2000

Therefore, regardless of which measure is used, the Credit Status variable has more information gain
than Gender, so it can be said that the Credit Status variable is better for branching at the current node.

There are many comparative studies on the question, ‘Which of the three uncertainty measures is better?’
The conclusion is that since all three measures measure uncertainty similarly, it is not possible to say ‘which

measure is better.’
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Let's take a closer look at the algorithm for creating a decision tree using the following example.

Example 6.2.5 When we surveyed 20 customers who visited a computer store, 8 customers purchased a
computer (Purchasing group, G;) and 12 customers did not purchase a computer (Non-purchasing group,
G». The survey included variables such as gender, age, monthly income, and credit status of these 20
customers as well as Purchase status as shown in Table 6.2.9. Note that all variables are surveyed as
categorical variables such as (Female, Male) for gender, (20s, 30s) for age, (GE2000, LT2000) for income,
(Bad, Fair, Good) for credit status, and (No, Yes) for Purchase status.

1) Find a classification model using the decision tree. Use the entropy coefficient for variable selection,
and if the number of data in each leaf is 5 or less, no further branching is performed, and a decision is
made by majority vote. If the data in each leaf are classified into one group, no further branching is
performed.

2) Using this decision tree model, classify a customer who is a 33-year-old male with a monthly income
of 2,200 (unit 10,000 won) and good credit status, whether he will purchase a computer or not.

Table 6.2.9 Survey of customers on gender, age, income, credit status and purchase status

Number Gender Age Income Credit Purchase
(unit 10,000 won)

1 Male 20s LT2000 Fair Yes
2 Female 30s GE2000 Good No
3 Female 20s GE2000 Fair No
4 Female 20s GE2000 Fair Yes
5 Female 20s LT2000 Bad No
6 Female 30s GE2000 Fair No
7 Female 30s GE2000 Good Yes
8 Male 20s LT2000 Fair No
9 Female 20s GE2000 Good No
10 Male 30s GE2000 Fair Yes
11 Female 30s GE2000 Good Yes
12 Female 20s LT2000 Fair No
13 Male 30s GE2000 Fair No
14 Male 30s LT2000 Fair Yes
15 Female 30s GE2000 Good Yes
16 Female 30s GE2000 Fair No
17 Female 20s GE2000 Bad No
18 Male 20s GE2000 Bad No
19 Male 30s GE2000 Good Yes
20 Male 20s LT2000 Fair No

Answer

In the decision tree algorithm, the data set E is the data in Table 6.2.9, and the variable set is F =
{Gender, Age, Income, Credit}. The target variable, Purchase, has two groups, {Yes, No}. The stopping
rule of the decision tree is ‘If the number of data in each leaf is 5 or less, do not divide any more’, and
‘If all are classified into one group, stop with the leaf as the group’.
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The number of data in the current data set is 20, so stopping.conditon(E, F') in step 1 is false, so go to
step 6. For the root node T's creatNode(), the entropy coefficient I(T) for the distribution of the
purchasing group(G1) and the non-purchasing group (G2), (8/20, 12/20), is as follows;

I(T) = —0.4 x log30.4 — 0.6 x log,0.6 = 0.9710

In order to find the optimal branch split, find_best_split(), of step 7, a cross-table is obtained for each
variable by group, and the expected information and information gain for the variable are obtained as in
Table 6.2.10 using the entropy coefficient. Since the information gain of the credit status is the largest,
the root node becomes the credit status, and the set of variable values of credit status in step 8 becomes
V = {Bad, Fair, Good}. The Epui, Eruir, Ecood according to the credit status in step 10 are drawn in the
form of a decision tree as in <Figure 6.2.3>.

Variable

Gender Female

Male
Age 20s
30s
Income GE200
LT200
Credit Bad
Fair

Good

Table 6.2.10 Expected information and information gain for each variable

Purchasing
group G'1

4

4

Non-purchasing

group G2
8

4

Total

12

Expected entropy
10
10
Expected entropy
14
6
Expected entropy
3
11
6

Expected entropy

Entropy

0.9183
1.0000
0.9510
0.7219
0.9710
0.8464
0.9852
0.9783
0.9651
0.0000
0.9457
0.9183

0.9756

Information gain

A

0.0200

0.1246

0.0059

0.1754

Bad

Mumber [ Gender | Age

I Income | Credit IPurchase

5 Female 20s
7 Female s
18 Male s

LT2000 Bad No
GE2000 Bad No
GE2000 Bad No

| Fair
Epie
Nuni:t:rl Gender J Age | Income J Credit {Pumhasc
1 Male 208 LT2000  Fair Yes
3 Female 208 GE2000 = Fair No
4 Female 20s LT2000 Fair Yes
6 Female 30s GE2000 = Fair No
8 Male 208 LT2000  Fair No
10 Male 30s GE2000 | Fair Yes
12 Female 208 LT2000  Fair No
13 Male 30s GE2000  Fair No
14 Male 30s LT2000 | Fair Yes
16 Female 30s GE2000 = Fair No
20 Male 208 LT2000 = Fair No

<Figure 6.2.3> Decision tree with branching according to credit status

~~ __ Good

Number I Gender | Age

I InGome | Credit JPurd‘lasc

2 Female 30s
T Female 30s
9 Female 20s

" Female 30s
15 Female 30s
19 Male 30s

The TreeGrowth() algorithm is repeatedly applied to each data set until the stopping rule is satisfied
(step 11). Among these, the data sets of 3 people with Bad credit, Eg,.q4, are all Non-purchasing groups,
satisfying the stopping rule, so they are not branching any further, and the leaves are marked as the Non-
purchasing group.
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Since the stopping rule is not satisfied for the data set of 11 people with Fair credit, Er,;,, this data set
needs further split. The entropy coefficients for the distribution (4/11, 7/11) of the Purchasing group (G1
) and the Non-purchasing group (G;) are as follows.

4 4 7 7
I(EFur) = 11 X loggﬁ BET X loggﬁ = 0.9457

In order to find the optimal split, find_best_split(), for the 11 people, a cross-table for each variable by
the group is obtained, and the expected information and information gain for the variables are obtained
using the entropy coefficient, as shown in Table 6.2.11. In the case of the data set with Fair credit, the

information gain for Gender is the largest, so it becomes a node for branching, and a decision tree such
as <Figure 6.2.4> is formed.

Table 6.2.11 Expected information and information gain for each variable in Ep,;,
Variable Purchasing Non-purchasing Total Entropy Information gain
group G group G2 A

Gender Female 1 4 5 0.7219
Male 3 3 6 1.0000

Expected entropy 0.8736 0.0721
Age 20s 2 4 6 0.9183
30s 2 3 5 0.9710

Expected entropy 0.9422 0.0034
Income GE200 2 4 6 0.9183
LT200 2 3 5 0.9710

Expected entropy 0.9422 0.0034

.-EM;;,:
Eremaie
Number ‘ Gender | Age ‘ Income l Credit ‘Purchase
Number | Gender | Age | Income | Credit | Purchase ] Vale | 20s | LT2000  Fair Yos
3  Female = 20s | GE2000 Fair No 8 Male 20s | LT2000 | Fair No
4 | Femle | 20s | LT2000 | Fair Yes 10 | Male | 30s | GE2000 Fair Yes
6  Female  30s | GE2000 | Fair No 13 Male 30s | GE2000  Fair No
12 Female 20s LT2000 Fair No 14 Male 30s LT2000 Fair Yes
16 Female | 30s | GE2000 | Fair No 20 Male | 20s | LT2000 @ Fair No

<Figure 6.2.4> Decision tree with branching according to Gender in Erg;,

As shown in the Figure 6.2.4, there are 5 data sets of Female with Fair credit, Er.q., Which satisfies the
stopping rule, so they are not split any further. Since there four people who did not purchase the
computer and only one person purchased, this node are marked as Non-purchasing group by majority
vote.

As shown in Figure 6.2.4, there are 6 data sets of Male with Fair credit, Ej., the stopping rule is not
satisfied and this data set needs further split. The entropy coefficients for the distribution (3/6, 3/6) of
the Purchasing group (G1) and the Non-purchasing group (G3) are as follows.

3 3 3 3
I(Eprqre) = 5 = 10926 e lonE =1

file:///D:/estat/eLearning/en/DataScience/chapter06.html

15/49



3/15/25, 2:54 AM Chapter 6

In order to find the optimal branch split, find_best_split(), for the 6 people, a cross-table by the group
for each variable is obtained, and the expected information and information gain for the variables are
obtained using the entropy coefficient, as shown in Table 6.2.12. In the case of the Male with Fair credit,
the information gain for Age is the largest, so it becomes a node for branching, and a decision tree such
as <Figure 6.2.5> is formed. Here, since there are 3 people in their 20s and 30s, there is no more
branching, and the 20s becomes the Non-purchasing group, and the 30s becomes the Purchasing group by
majority vote.

Table 6.2.12 Expected information and information gain for each variable in Ej/4.
Variable Purchasing Non-purchasing Total Entropy Information gain
group G'1 group G2 A
Age 20s 1 2 3 0.9183
30s 2 1 3 0.9183
Expected entropy 0.9183 0.0817
Income GE200 1 1 2 1.0000
LT200 2 2 4 1.0000
Expected entropy 1.0000 0.0000
Age
£y, Ey, Purchase
Number I Gender l Age [ Income | Credit [Purchase Number l Gender | Age l Income I Credit lPurchase
1 Male 20s LT2000 | Fair Yes 10 Male 30s GE2000  Fair Yes
8 Male 20s LT2000 Fair No 13 Male 30s GE2000 Fair No
20 Male 20s LT2000 | Fair No 14 Male 30s LT2000  Fair Yes

<Figure 6.2.5> Decision tree with branching according to Gender in Ejqe

At the root node with Credit, since the stopping rule is not satisfied for the data set of 6 people with
Good credit, Eq,.q, the entropy coefficients for the distribution (4/6, 2/6) of the Purchasing group (G;)
and the Non-purchasing group (G2) are as follows.

4 4 2 2
I(EGood) = % X loggg -3 X logzg =0.9183

In order to find the optimal branch split, find_best_split(), for the 6 people, a cross-table by the group
for each variable is obtained, and the expected information and information gain for the variables are
obtained using the entropy coefficient as shown in Table 6.2.13. Since the information gain of Age is the
largest in the data set of Good credit, it becomes a node for branching and forms a decision tree as in
<Figure 6.2.6>. As shown in the figure, among the people with Good credit, there is only one person in
Age 20s who did not purchase a computer, so it becomes the Non-purchasing group by the stopping rule.
There are 5 people in Age 30s, and 4 of them purchased a computer, so they become the Purchasing
group by majority vote.

Table 6.2.13 Expected information and information gain for each variable in E¢y.q
Variable Purchasing Non-purchasing Total Entropy Information gain
group G; group G5 A
Gender Female 3 2 5 0.9710
Male 1 0 1 0.0000
Expected entropy 0.8091 0.1092
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Age 20s 0 1 1 0.0000
30s 4 1 5 0.7219
Expected entropy 0.6016 0.3167
Income GE200 4 2 6 0.9183
LT200 0 0 0 0.0000
Expected entropy 0.9183 0.0000
/s .
// \R‘\
S
// \\\303
20s // \\
//
yd Number lﬁender | Age l Income l Credit | Purchase
/ 2 | Female | 30s | GE2000 Good No
E,, 7 | Female | 30s | GE2000  Good Yes
Mrnberlﬁenderl Age [ Income | Credit | Purchase L _Femle I e I ] oo I Yeu
P Famalo . E2000 | Good ™ 15 .Femle . 30s . GE2000  Good . Yes
19 Male 30s GE2000  Good Yes

<Figure 6.2.6> Decision tree with branching according to Age in E¢ood

If we combine the above, the decision tree in Figure 6.2.7 is completed. Therefore, the customer who is
a 33-year-old man, has a monthly income of 220, and has a good credit is classified as a Purchasing

group.
// -\--\-k"--\.
Bad _— | ~—_
— Fair T Good
— T
— -\--\"'\--\__\__\_‘
Non-purchase Dy
== -
> < -
Female / 20s 7 . 30s
Vi

<Figure 6.2.7> Decision tree to decide a customer will purchase a computer or not

In FeStatU,; menu, select [Decision Tree] to see the window as follows; Check the criteria for variable
selection which is 'Entropy’ in this example, enter the maximum tree depth 5 and the minimum number
of data 5 for a decision. You can divide the original data set into Train' and Test' by assigning the
percents. Click [Execute] button to see the bar graph matrix and decision tree. Click [Classification Stat]
to see the decision rules of this decision tree and the accuracy/misclassification of the classification as in
<Figure 6.2.8>. Click [Classification Table] to see the original data and classification result as in <Figure
6.2.9>.

[Decision Tree]
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Decision Tree :l

Variable Name  Data Input

Y Purchase Yes No No Yes No No Yes No No Yes Yes No No Yes Yes No No No Yes No

X1 Gender male female female female female female female male female male female female
X, Age 20s 30s 20s 20s 20s 30s 30s 20s 20s 30s 30s 20s 30s 30s 30s 30s 20s 20s 30s Z
X3 Income LT2000 GE2000 GE2000 GE2000 LT2000 GE2000 GE2000 LT2000 GE2000 GEZ
X4 Credit Fair Good Fair Fair Bad Fair Good Fair Good Fair Good Fair Fair Fair Good Fair B
Xs

Variable selelection ® Entropy O Gini O Classification error O Chi-square
Tree depth max = 5 Branch data min = 5
Data partition (Train 100 % : Test 0 %)

Execute ] [ Erase Data ]

Graph Save ] [ Classification Stat ] [ Classification Table ] [ Table Save
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id Decision Rule Condition Decision
1 |[(Credit =Bad) No
2 |[(Credit = Fair) and (Gender = female) No
3 ||(Credit =Fair) and (Gender = male) and (Age = 20s) No
4 |[(Credit = Fair) and (Gender = male) and (Age = 30s) Yes
53 |(Credit = Good) and (Age = 20s) No
6 |(Credit = Good) and (Age = 30s) Yes
Training Data
Classification Decision Decision Total
Cell % Purchase : No Purchase : Yes
Row %
10 2 12]
Purchase : No 50.00 % 10.00 %, 60.00 %|
83.33% 16.67 %| 100.00 %)
2 6| 8
Purchase : Yes 10.00 % 30.00 % 40.00 %|
25.00 % 75.00 % 100.00 %)
12 8 20,
Total 60.00 % 40.00 % 100.00 %
Accuracy 80.00%|| Misclassification Rate 20.00%|

<Figure 6.2.8> Decision rules and classifcation acuracy

Training Data Purchase Gender Age Income Credit Classification
1 Yes male 208 LT2000 Fair No
2 No female 30s GE2000 Good Yes
3 No female 20s GE2000 Fair No
4 Yes female 208 GE2000 Fair No
5 No female 20s LT2000 Bad No
6 No female 30s GE2000 Fair No
7 Yes female 30s GE2000 Good Yes
8 No male 20s LT2000 Fair No
] No female 20s GE2000 Good No

10 Yes male 30s GE2000 Fair Yes
11 Yes female 30s GE2000 Good Yes
12 No female 208 LT2000 Fair No
13 No male 30s GE2000 Fair Yes
14 Yes male 30s LT2000 Fair Yes
15 Yes female 30s GE2000 Good Yes
16 No female 30s GE2000 Fair No
17 No female 20s GE2000 Bad No
18 No male 20s GE2000 Bad No
19 Yes male 30s GE2000 Good Yes
20 No male 208 LT2000 Fair No
Testing Data Purchase Gender Age Income Credit Classification

<Figure 6.2.9> Original data and classification

6.2.3 Categorization of a continuous variable

We can convert a continuous variable to a categorical variable, and a decision tree model can be applied.
For example, the monthly income variable can be divided into two groups: ‘Greater than or equal 2000’ and
‘Less than 2000°. In this case, the question arises ‘What boundary value should be used to divide a value of the
continuous variable?” An expert related to this research can decide this boundary value. However, if the

determination of the boundary value is for more accurate classification, then the uncertainty measures studied
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in the previous section can be used to determine the boundary value which increases the accuracy of the

classification.

Example 6.2.6 In a store, a survey of 10 customers was conducted on their monthly income (unit 10,000
won) and whether they purchased a certain product or not, and the results are shown in Table 6.2.14.
The incomes are arranged in ascending order and the purchase status is denoted as 'Y' if a customer
purchases, and 'N' if he did not purchase. In order to apply the decision tree model, we want to divide
the monthly income into two categories. What boundary value of the income is reasonable to divide for
classification?

Table 6.2.14 Survey of customers on income and purchase status

Purchase N N N Y Y Y N N N N
Income 100 120 160 180 186 190 210 250 270 300
Answer

It is reasonable to examine all middle values of two adjacent incomes as the boundary value, and check
how their classification result is made. Then select the boundary value with the least ‘uncertainty’
among them. When a boundary value is examined, if incomes on left side of the boundary value are
classified as 'N' group and incomes on the right-side of the boundary value are classified as 'Y’ group, a
crosstable for classification is summarized as in Table 6.2.15. A boundary value which is smaller than the
minimum income or larger than the maximum income is excluded because its division is meaningless. For
the first middle value 110 between income 100 and 120 in Table 6.2.11, we classify data using the rule as
follows;

If the income < 110, then classify data as "N’ group, else classify data as 'Y’ group

The data 100 is classified correctly using this rule as 'N' group, and the remaining nine data are classified
'Y' group, therefore, three (180, 186, 190) out of nine data are classified correctly as 'Y’ group, and six
(120, 160, 210, 250, 270, 300) out of nine data are classified incorrectly as 'Y' group as the following
crosstable;

Using the Gini coefficient as the uncertainty measure, the expected Gini coefficient when the middle
value is 110 calculated as follows;

1—10 « {1 _ (%)2 - (%)2} + % X {1 - (%)2 - (%)2} — 0.4000

The expected Gini coefficients for all remaining middle values can be calculated in the same way as
Table 6.2.15. The boundary value with the least uncertainty is 200.

Table 6.2.15 Expected Gini coefficient using the middle value of two adjacent incomes

Actual group

Middle value = 110 N Y Total Expected Gini coefficient
Classified group N 1 0 1
Y 6 3 9
Total 10 0.400

Actual group

Middle value = 135 N Y Total Expected Gini coefficient
Classified group N 2 0 2
Y 5 3 8
Total 10 0.375

Actual group
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calculations. If there are several candidates for the threshold, we can decide which of them is better in a similar
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Middle value = 170

Classified group N

Total

Middle value = 183

Classified group

Y
Total
Middle value = 188
Classified group N
Y
Total
Middle value = 200
Classified group N
Y
Total
Middle value = 230
Classified group N
Y
Total
Middle value = 260
Classified group N
Y
Total
Middle value = 285
Classified group N
Y
Total

Actual group

N

Actual group

N

Actual group

N

Actual group

N

4

Actual group

N

Actual group

N

Y

Y

Y

Y

Y

Y

Total

10

Total

10

Total

10

Total

10

Total

10

Total

10

Total

10

Chapter 6

Expected Gini coefficient

0.343

Expected Gini coefficient

0.417

Expected Gini coefficient

0.400

Expected Gini coefficient

0.300

Expected Gini coefficient

0.343

Expected Gini coefficient

0.375

Expected Gini coefficient

0.400

The method of setting the boundary value of the continuous variable, as the above example, requires many
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Example 6.2.7 In a department store, when 20 customers were surveyed, 7 (35%) made purchases and 13
(65%) did not make purchases. A cross-tabulation was created to compare the methods of dividing the
ages of these 20 people into those under 25 and over 25, and those under 35 and over 35, as shown in
Table 6.2.16. Using the entropy information gain, decide which interval is better.

Table 6.2.16 crosstable of two interval divisions by purchase status
Purchase status
Age interval 1 Purchasing group Non-purchasing group Total
<25 1 5 6
> 25 6 8 14
Total 7 13 20
Age interval 2 Purchasing group Non-purchasing group Total
<35 3 12 15
>35 4 1 5
Total 7 13 20
Answer

Let us compare the two crosstables to see which interval division is better. (Age interval 1) has many
Non-purchasing groups in both ‘< 25 and "> 25 intervals. (Age unterval 2) has 12 customers in Non-
purchasing group out of 15 customers who are '< 35 which is a high proportion, and 4 customers in
Purchasing group out of 5 customers who are "> 35 which is also a high proportion. Therefore, among the
two interval division methods, (Age interval 2) provides more information on purchase. Let us confirm
this using the entropy measure.

The expected entropy for the total distribution (2—70, ;—3) of Purchasing group and Non-purchasing group is
calculated as follows.

7 7 13 13
—(2—0) 1092(%) - (%)logz(%) = 0.9341

The expected entropy and information gain for the two interval divisions are calculated as in Table
6.2.17.

Table 6.2.17 Expected entropy and information gain of two interval divisions
Purchase status
Age interval 1 Purchasing Non- Total Entropy
group purchasing
group
<25 1 5 6 —(3)loga(5)* — (§)loga(§) = 0.6500
> 25 6 8 14 —(£)loga(F)? — (E)loga(F) = 0.9852
Total 7 13 20  Expected entropy Information gain
= £ % 0.6500 + 35 x 0.9852 = 0.9341 — 0.8847
=0.8847 = 0.0494
Age interval 2 Purchasing Non- Total Entropy
group purchasing
group
<35 3 12 15 —(2)loga(£)? — (3%)loga(3) = 0.7219
>35 4 1 5 —($)loga(3)* — (%)loga(3) = 0.7219
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Total 7 13 20 Expected entropy Information gain
= 35 x 0.7219 + & x 0.7219 =0.9341 — 0.7219
=0.7219 =0.2121

(Age interval 2) that divides into '< 35" and "> 35’ has a large information gain, so this interval division is
selected.

The above method can also be applied if you want to reduce the number of categories when there are
multiple valuesfor a categorical variable. For example, if there are three categorical variable values, (
A1, Az, A3), and we want to reduce them to two, we can investigate the information gain for the three possible
combinations (A1, As : A3), (A1, As: As), (As, A3 : A7) and select the combination that maximizes the

information gain.

6.2.4 Overfitting and pruning decision tree

Decision tree models can have an overfitting problem, classifying training data well but not good for testing
data. Pruning is one way to solve the problem of overfitting, and there are pre-pruning and post-pruning. Pre-
pruning is to examine the appropriateness of the division using chi-square tests and information gain to prevent
meaningless divisions from continuing. Regardless of which method is applied, a threshold value must be set,
which must be determined by the researcher. If the threshold value is too high, a simple tree will be formed,

and conversely, if it is too low, a complex tree may be formed.

Post-pruning is a method of removing branches from a completed tree. For example, when pruning subtrees
for each node, the expected error rate is calculated, and if this value is the maximum expected error rate, the
subtrees are maintained. Otherwise, they are pruned. Pre-pruning and post-pruning are sometimes used in

combination.

Characteristics of decision tree model

The important characteristics of the decision tree classification model are summarized as follows:

1) The decision tree model is a nonparametric method that does not assume the distribution function of each
group.

2) The results of the decision tree model are easy to explain to anyone. The accuracy of the model is not
inferior to other classification models.

3) Since the method of creating a decision tree is not computationally complex, it can be created quickly, even
for large amounts of data. Once a decision tree is created, the task of classifying data whose group
affiliation is unknown into one group is very fast.

4) The decision tree algorithm can classify abnormal noise data without much sensitivity.

5) Even if there are other unnecessary variables that are highly correlated with one variable, the decision tree is
not greatly affected. However, if there are many unnecessary variables, there is a risk that the decision tree
will become too large. It is necessary to remove unnecessary variables before classification to prevent the
risk.

6) Since the number of decision trees that can be created from one data is very large, it is not easy to find the
optimal decision tree among them. Most decision tree algorithms use heuristic search to find the optimal
tree, and the Algorithm we discussed also expands the decision tree using a top-down iterative partitioning
strategy.

7) Since most decision tree algorithms are top-down iterative partitioning algorithms, they continuously

partition the entire data set into smaller data sets. If this process is repeated, there may be too few data in
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some leaves to make a statistically meaningful classification decision. It is necessary to create a stopping
rule that prevents further partitioning when the number of data in a node is less than a certain number.

8) In the entire decision tree, small trees (subtrees) with the same shape can appear in multiple nodes, which
can complicate the decision tree.

9) A decision tree examines only the conditions for one variable in one node. Therefore, the classification rule
of the decision tree partitions the entire decision space into straight lines parallel to the coordinate axes
(variables) (<Figure 6.2.10>).
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<Figure 6.2.10> Split two dimension decision space by a decision tree

However, the example data in <Figure 6.2.11> is not easy to split by a decision tree. The test condition
at the node can be transformed into one for more than one variable to solve the problem,. For example, a
diagonal shape like <Figure 6.2.11> can be considered as a test condition for two variables. It would be
good to create a test condition for more than two variables, but the calculation is complicated and another

problem of ‘how to create the optimal test condition?’ arises.

\\\ D
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0O O
o
X, “ O

X

<Figure 6.2.11> Example data which is not easy to split by a decision tree

file:///D:/estat/eLearning/en/DataScience/chapter06.html 24/49



3/15/25, 2:54 AM Chapter 6

10) The choice of uncertainty measures such as entropy or Gini coefficient does not have a significant effect
on the performance of the decision tree. This is because the measures have similar characteristics. What
affects the performance of the decision tree is the choice of the tree pruning method rather than the choice

of measure.

6.2.5 R practice

Let us practice R commands using the data saved at C:\Rwork\PurchaseByCredit20.csv. The file format is a
comma separated value (csv) type. You can find this file from "eStaty system. Click Ex > DataScience and then
click the data "PurchaseByCredit20.csv'. After this file is loaded to "eStat, save it using 'csv Save' button. It
will be saved at the Download folder on your PC. Copy this file to C:\Rwork\ folder. In order to practice the

decision tree using this data, you need to change first the working directory of R as follows.
File > Change Directory > C: > Rwork
If you read the data file in R, it looks like as follows.

# read the data file

> card <- read.csv("PurchaseByCredit20.csv", header=T, as.is=FALSE)

> card

id Gender Age Income Credit Purchase
1 1 male 20s LT2000 Fair Yes
2 2 female 30s GE2000 Good No
3 3 female 20s GE2000 Fair No
4 4 female 20s GE2000 Fair Yes
5 5 female 20s LT2000 Bad No
6 6 female 30s GE2000 Fair No
7 7 female 30s GE2000 Good Yes
8 8 male 20s LT2000 Fair No
9 9 female 20s GE2000  Good No
10 10 male 30s GE2000 Fair Yes
11 11 female 30s GE200@  Good Yes
12 12 female 20s LT2000 Fair No
13 13 male 30s GE2000 Fair No
14 14 male 30s LT2000 Fair Yes
15 15 female 30s GE2000 Good Yes
16 16 female 30s GE2000 Fair No
17 17 female 20s GE2000 Bad No
18 18 male 20s GE2000 Bad No
19 19 male 30s GE2000 Good Yes
20 20 male 20s LT2000 Fair No

- attachcard)

To analyze decision trees using R, you need to install a package called rpart. From the main menu of R,
select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear. Here, select ‘0-
Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘rpart’ and click ‘OK’.
'rpart’ is a package for modeling of Recursive Partitioning and Regression Trees and general usage and key

arguments of the function are described in the following table.

Fit a Recursive Partitioning and Regression Trees

rpart(formula, data, weights, subset, na.action = na.rpart, method, model = FALSE, x = FALSE, y = TRUE,
parms, control, cost, ...)
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formula a formula, with a response but no interaction terms. If this a a data frame, that is taken as the
model frame (see model.frame).

data an optional data frame in which to interpret the variables named in the formula.

method one of "anova”, "poisson”, "class” or "exp". If method is missing then the routine tries to make an
intelligent guess. If y is a survival object, then method = "exp" is assumed, if y has 2 columns then
method = "poisson” is assumed, if y is a factor then method = "class” is assumed, otherwise method =
"anova" is assumed. It is wisest to specify the method directly, especially as more criteria may added
to the function in future.

parms optional parameters for the splitting function.
Anova splitting has no parameters.
Poisson splitting has a single parameter, the coefficient of variation of the prior distribution on the
rates. The default value is 1.
Exponential splitting has the same parameter as Poisson.
For classification splitting, the list can contain any of: the vector of prior probabilities (component
prior), the loss matrix (component loss) or the splitting index (component split). The priors must be
positive and sum to 1. The loss matrix must have zeros on the diagonal and positive off-diagonal
elements. The splitting index can be gini or information. The default priors are proportional to the
data counts, the losses default to 1, and the split defaults to gini.

control a list of options that control details of the rpart algorithm. See rpart.control.

rpart.control(minsplit = 20, minbucket = round(minsplit/3), cp = 0.01, maxcompete = 4, maxsurrogate = 5,
usesurrogate = 2, xval = 10, surrogatestyle = 0, maxdepth = 30, ...)

minsplit the minimum number of observations that must exist in a node in order for a split to be attempted.

minbucket the minimum number of observations in any terminal node. If only one of minbucket or minsplit is
specified, the code either sets minsplit to minbucket*3 or minbucket to minsplit/3, as appropriate.

cp complexity parameter. Any split that does not decrease the overall lack of fit by a factor of cp is not
attempted. For instance, with anova splitting, this means that the overall R-squared must increase
by cp at each step. The main role of this parameter is to save computing time by pruning off splits
that are obviously not worthwhile. Essentially,the user informs the program that any split which does
not improve the fit by cp will likely be pruned off by cross-validation, and that hence the program
need not pursue it.

maxdepth  Set the maximum depth of any node of the final tree, with the root node counted as depth 0. Values
greater than 30 rpart will give nonsense results on 32-bit machines.

An example of R commands for a decision tree using the dataset card is as follows. The results of
practicing a decision tree in R with purchase as the dependent variable of card data and other variables as
independent variables are as follows. In Example 6.2.5, the information gain of credit status was the largest, so
this variable was the root node. However, since some of the number of data belonging to credit status variable
value was small (‘bad’ = 3, ‘good’ = 6, ), the next largest information gain, which is age, was selected as the
root node in R.

> install.packages('rpart’)
> fit <- rpart(Purchase - Gender + Age + Income + Credit, data = card)
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n= 20
node), split, n, loss, yval, (yprob)
* denotes terminal node
1) root 20 8 No (©.6000000 ©.4000000)
2) Age=20s 10 2 No (0.8000000 ©.2000000) *
3) Age=30s 10 4 Yes (0.4000000 0.6000000)

However, the analysis result is simple because the minimum number of pruning data of the rpart function is 20
or more by default. Let's change this default setting and prune it. The results of practicing decision trees in R
with purchase as the dependent variable of card data and other variables as independent variables are as
follows.

> fit2 <- rpart(Purchase ~ Gender + Age + Income + Credit, data = card, control =

rpart.control(minsplit = 6))

n= 20
node), split, n, loss, yval, (yprob)
* denotes terminal node
1) root 20 8 No (©.6000000 0.4000000)
2) Age=20s 10 2 No (©.8000000 0.2000000) *
3) Age=30s 10 4 Yes (0©.4000000 0.6000000)
6) Credit=Fair 5 2 No (©.6000000 0.4000000) *
7) Credit=Good 5 1 Yes (0.2000000 0.8000000) *

To draw a decision tree as a graph, use the plot and text commands below. 'plot' draws a tree diagram and, if the
option 'compress' is T, the vertical width is narrowed, and if 'uniform' is T, the horizontal width is narrowed.
'margin' sets the margin. If the margin is 0, the label may be cut off, so set it little by little. 'text' labels the tree,
and 'use.n' displays something like 0/4. The decision tree drawn with the above command is as follows.

> plot(fit2,compress=T,uniform=T,margin=0.1)
> text(fit2,use.n=T,col="blue’)

Age-a
Credlit=b
No
812
No Yes
a9 114

<Figure 6.2.12> Decision tree using R
In the decision tree diagram above, age=a is the condition of the left branch, and 'a' means the first variable

value '20s', credit=b is also the condition of the left branch, and 'b' means 'fair' (in this case, it seems to have
been merged because 'bad' is missing). For more information, please refer to the help. In packages such as R,
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when the number of data corresponding to each variable value is too small, pruning is determined by merging

with adjacent variable values.

6.3 Naive Bayes classification model
6.3.1 Bayes classification

When the prior probability of being classified into each group and the likelihood probability of each
group are known, the Bayes classification model is a method of classifying data into groups with high
probability by calculating the posterior probability using Bayes theorem, which was introduced in section 4.1.2.
Let us look at the Bayes classification model for a single variable case using the following example.

Example 6.3.1 (Classification by prior probability)

When 20 customers who visited a computer store were surveyed, 8 customers purchased a computer, and
12 customers did not purchase a computer. Based on this information, classify a customer who visited this
store on a day whether he would purchase a computer or not.

Answer

Among the 20 customers who visited the store, only 8 (40%) purchased a computer, and 12 (60%) did not
purchase a computer. This information, the probability of the purchasing group is 40% and the probability
of the non-purchasing group is 60% by surveying past data, are called prior probabilities. If a decision is
made based on these prior probabilities, since the probability of the non-purchasing group is higher than
the purchasing group, it is reasonable to classify a customer who visited on a day as into the non-
purchasing group.

As in the example above, classifying data whose group membership is unknown into a group with the
highest prior probability is called a classification by prior probability. If the purchasing group of the
computer is G1 and the non-purchasing group is G2, and the prior probability of each group is P(G1) and
P(G>), the classification rule by the prior probability is as follows;

Classification rule by prior probability

‘If P(G1) = P(G3), classify the data into group G, otherwise classify it into G5’

If we can obtain the distribution of the age of the purchasing group and the non-purchasing group, it can be
useful information for judging whether to purchase or not. This is called the likelihood probability
distribution or group probability distribution. In this case, we can calculate the posterior probability of
each group using the Bayes theorem, and the classification using this posterior probability is called Bayes

classification. Let us look at the following example.

Example 6.3.2 (Classification by posterior probability)

In Example 6.3.1, the classification decision was made using simple prior information such as the
probability of the purchasing group and the non-purchasing group. One of the additional information that
can be obtained is a customer's age. Suppose there are 10 customers in their age 20's among 20
customers and 10 customers in their age 30's. Among the 8 purchasing groups, 2 customers in their age
20's and 6 are in their age 30's. If a customer who visited the store on a day is in his age 20's, classify the
customer whether he purchases the computer or not by calculating the posterior probability.

Answer

The customer's age by the purchasing group (G;) and the non-purchasing group (G5) are summarized in
the following table.
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Table 6.3.1 crosstable on Age by Purchasing status

Age Purchasing group Non-purchasing group Total
Gy G>
20's 2 8 10
30's 6 4 10
Total 8 12 20

Looking at this table, we can see that the purchasing group (G;) has a higher proportion of customers in
age 30's, and the non-purchasing group (G2) has a higher proportion of customers in their age 20's. The
age distribution of each group is called the likelihood probability distribution. When the age of 20's is
represented as X, the probability of age 20s in the purchasing group is 2/8, which is denoted as the
conditional probability P(X|G;) and the probability of age 20's in the non-purchasing group is 8/12,
which is denoted as P(X|G2). If a customer who visited on a day was in his age 20's, the probability that
this customer would purchase the computer is called the posterior probability of the purchasing group
and is denoted as P(G;|X). This posterior probability can be obtained as follows using Bayes' theorem.

P(G1) x P(X|G1)
P(G1) x P(X|G1) + P(G2) x P(X|G»)
= % ~ % =0.2

8 2 12 8
2w Xgtan X1

P(G1]|X) =

Here, the denominator is the probability of all age 20's, P(X) = 10/20, and the numerator means the
proportion of age 20's who purchased the computer, 2/20. In the same way, the posterior probability of
non-purchasing goup among age 20's is denoted as P(G2|X), and is calculated as follows using Bayes'
theorem.

P(G,) x P(X|G>)

P(Gl) X P(X|G1) +P(G2) X P(X|G2)
12 8

20 12
T8 2,12 8 =038
20 8 20 12

P(G2|X) =

Therefore, since the posterior probability that a customer in age 20's belongs to the non-purchasing group
is 0.8, which is higher than the posterior probability of belonging to the purchasing group of 0.2, this
customer is classified as a non-purchasing group. As a result, when we obtain additional information that
the visitor is in age 20's, we can see that the probability that this person belongs to the purchasing group
of 0.2 is lower than the prior probability of 0.4.

When we know that a customer who visited is age 20's (X), we calculate the posterior probability P(G,|X)
that he belongs to the purchasing group (G:) and the posterior probability P(G>|X) that he belongs to the non-
purchasing group (G,) and classify the person into the group with the higher posterior probability. This is called

Bayes classification and the rule can be summarized as follows.
Bayes classification rule by posterior probability

‘If P(G1]X) > P(G»|X), classify data as G1, otherwise classify as G5’

Here, P(G,|X) and P(G,|X) have the same denominator in the calculation of the posterior probability, so

the classification rule can be written as follows.

‘If %(%%)l > %(g—f)l, classify data as G4, otherwise classify as G’

The Bayes classification model for one variable can be easily extended to the case of m random variables
X = (X, Xs,...,X). Let the prior probabilities of k& number of groups, Gi,Gs,...,G;, be
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P(G1),P(G2),...,P(Gy), and let the likelihood probability distribution function for each group be
P(X|G1), P(X|G2),...,P(X|Gk). Given the observation data = for classification, the posterior probability
P(G;|x) that this data comes from the group G; is as follows.

P(G;) x P(z|Gy)
(G1) x P(z|G1) + P(G2) x P(z|G3y) + -+ + P(G}) x P(|Gy)

P(Gil2) =

The Bayes classification rule using the posterior probability is as follows.

Bayes Classification - multiple groups

Suppose that prior probabilities of k& number of groups, Gi,Gs,...,Gy, are P(G,), P(G,),...,P(G}), and
likelihood probability distribution functions for each group are P(X|G1), P(X|Gz),...,P(X|Gk). Given the
observation data z for classification, let the posterior probabilities that = comes from each group be
P(Gi|x), P(G2|®), ..., P(Gklx). The Bayes classification rule is as follows.

'Classify « into a group with the highest posterior probability’

If we denote the likelihood probability functions as fi(z), f2(z),. .., fi(x), since the denominators in the
calculation of posterior probabilities are the same, the Bayes classification rule can be written as follows.

'If P(Gk) fr(2) > P(G;)fi(x) for all k # i, classify @ into group Gy'
If there are only two groups G,and G, the Bayes classification rule is expressed as follows.

if 223 > gggi; , classify @ into group Gy, else into group G,'

When there are sample data, if the likelihood probability distribution fi() can be estimated from the
sample, the Bayes classification rule can also be estimated using the likelihood probability distribution.
Therefore, the Bayes classification rule can appear in many variations depending on the estimation method of
the likelihood probability distribution. Estimation of the likelihood probability distribution using samples can
be done using either a parametric method, such as maximum likelihood estimation, or a nonparametric method.
In the case of categorical data, a multidimensional distribution estimated from the sample is often used, and in
the case of continuous data, a multivariate normal distribution is often used. For more information, please refer

to the related references.

6.3.2 Naive Bayes classification model for categorical data

When there are two or more categorical variables for classification, if the variables can be assumed
independent, the Bayes classification is called a naive Bayes classification. In the case of categorical data,
since there are many cases in which variables can be assumed independent in real applications, the naive Bayes

classification is used frequently. Let us consider an example of the naive Bayes classification.

Example 6.3.3 Consider a survey of 20 customers at a computer store on age (X;), monthly income (X,),
credit status (X3) and their purchasing status as shown in Table 6.3.2. Note that the age transformed into
"20s" and '30s' as categorical, income into 'LT2000' and 'GE2000', and credit status into 'Bad’, 'Fair’ and
'‘Good'.

Table 6.3.2 Survey of customers on age, income, credit status and purchasing status

Number Age Income Credit Purchase
(unit USD)
1 20s LT2000 Fair Yes
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2 30s GE2000 Good No
3 20s GE2000 Fair No
4 20s GE2000 Fair Yes
5 20s LT2000 Bad No
6 30s GE2000 Fair No
7 30s GE2000 Good Yes
8 20s LT2000 Fair No
9 20s GE2000 Good No
10 30s GE2000 Fair Yes
11 30s GE2000 Good Yes
12 20s LT2000 Fair No
13 30s GE2000 Fair No
14 30s LT2000 Fair Yes
15 30s GE2000 Good Yes
16 30s GE2000 Fair No
17 20s GE2000 Bad No
18 20s GE2000 Bad No
19 30s GE2000 Good Yes
20 20s LT2000 Fair No

If a customer who visited this store one day is 33 years old, has a monthly income of 1900 USD, and has a
good credit status, classify him using the posterior probability of whether he will buy a computer or not.

Answer

The one-dimensional likelihood probability distributions, P(X:|G;), P(X:|G:), P(X3|Gi), of each variable
by purchasing group (Gi) and non-purchasing group (G1) are summarized as in Table 6.3.3, and the
multidimensional likelihood probability distribution of three variables, P((X1, X5, X3)|G;), is summarized
as in Table 6.3.4.

Table 6.3.3 One-dimensional likelihood probability distributions on Age, Income and Credit

Age Purchasing group Non-purchasing group Total
Gy G»

20's 2 8 10
30's 6 4 10
Total 8 12 20
Income Purchasing group Non-purchasing group Total

Gy G>
LT2000 2 4 6
GE2000 6 8 14
Total 8 12 20
Credit Purchasing group Non-purchasing group Total
Gy G»
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Bad 0 3 3

Fair 4 7 1
Good 4 2 6
Total 8 12 20

Table 6.3.4 Multi-dimensional likelihood probability distributions on Age, Income and Credit

Age Income Credit Purchasing group Non-purchasing group Total
G G>
20's LT2000 Bad 1 1
Fair 1 3 4
Good
GE2000 Bad 2 2
Fair 1 1 2
Good 1 1
30's LT2000 Bad
Fair 1 1
Good
GE2000 Bad
Fair 1 3 4
Good 4 1 5
Total 8 12 20

If a customer who visited the computer store is represented as @ = (x1, x5, z3) = (30s, LT2000, Fair), the
posterior probability that this customer belongs to the purchasing group G; is P(G;|z) and the posterior
probability that this customer belongs to the non-purchasing group G; is P(Gs|z). However, in the
multidimensional likelihood distribution for the three variables in Table 6.3.4, the probability of a
customer being in their 30s, with an income of LT2000, and with fair credit is P(G;|z) = 1/8 and P(G;|z)
= 0. If the number of samples is insufficient, it is difficult to correctly estimate the likelihood probability
distribution. In this case, if variables, age, income, and credit status, can be assumed to be independent,
the one-dimensional likelihood probability distribution of each variable is used approximately to estimate
the multidimensional likelihood probability distribution as follows.

P(X = (X1, X5, X3) | Gi) = P(X1|G;) P(X5|G;) P(X;5|Gy)

For this problem, the approximate likelihood of customer @ = (30s, LT2000, Fair) is as follows.
P(z = (30s, LT2000, Fair) | G1) ~ & x 2 x 4 =0.0938
P(z = (30s, LT2000, Fair) | G2) ~ 15 X 45 X 15 = 0.0648

Therefore, the posterior probability for each group is as follows.

P(Gy) x P(z|Gy)
(Gl) X P(QB‘Gl) + P(Gz) X P($|G2)
B 0.4 x 0.0938
T 0.4 % 0.0938 + 0.6 x 0.0648

P(Gg) X P(€E|G2)
(G1) x P(x|G1) + P(G,) x P(x|G»)
B 0.6 x 0.0648
" 0.4 % 0.0938 + 0.6 x 0.0648

P(G,|z) = 2

=0.4911

P(Gile) =

= 0.5089
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Since the posterior probability of belonging to the non-purchasing group is 0.5089, which is greater than
the probability of belonging to the purchasing group, which is 0.4911, the customer is classified as the
non-purchasing group. Lift chart, confusion matrix and ROC graph are to evaluate the classification
model, and they will be explained in the next section.

[Naive Bayes Classification]
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Naive Bayes Classification :l
Variable Name  Data Input

Y Purchase Yes No No Yes No No Yes No No Yes Yes No No Yes Yes No No No Yes No

X] Age 20s 30s 20s 20s 20s 30s 30s 20s 20s 30s 30s 20s 30s 30s 30s 30s 20s 20s 30s
X3 Income LT2000 GE2000 GE2000 GE2000 LT2000 GE2000 GE2000 LT2000 GE2000 GE:
X3 Credit Fair Good Fair Fair Bad Fair Good Fair Good Fair Good Fair Fair Fair Good Fair
X4

Xs

Data partition (Train 100 % : Test 0 %)
Prior probability @ sample proportion O equal proportion

Execute ] [ Erase Data ]

Graph Save] [ Lift Chart ] [ Confusion ] [ ROC ] [ Classification Table] [Table Save
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As in the example above, assuming that variables for classification are independent, obtaining an
approximate likelihood probability distribution by group, obtaining the posterior probability, and then
classifying is called a naive Bayes classification. The naive Bayes classification is less realistic because it
assumes that all variables are independent of each other, but it is often used as an approximate classification
method. However, you should know that it can show inaccurate classification results when variables are related

to each other.

To compensate for the problem of assuming that all variables are independent, subsets of variables can be
assumed to be independent, and the likelihood probability distribution can be obtained. This classification
model is called a Bayes belief network. In this method, it is necessary to first investigate which variables are

related to each other and which variables are independent. For more information, please refer to the references.

6.3.3 Stepwise variable selection

Bayes classification can be applied to whether the variables are continuous or discrete, and an appropriate
likelihood probability distribution can be estimated. If continuous and discrete variables are mixed, the naive
Bayes classification can be applied by categorizing the continuous variables, as we discussed in section 6.2.3.

If there are many variables in the data, in general, we use variables that can best explain group variables,
that is, variables with high discriminatory power between groups. A stepwise variable selection can be helpful
in classifying data to increase accuracy. There are two methods to select variables: forward selection and
backward elimination. The forward selection of variables is similar to the variable selection in a decision tree,
which selects a variable with the highest information gain using the uncertainty measures or chi-square test.
After selecting a variable for classification, add another variable with the next highest information gain in the

selection step-by-step until finding a set of variables with the highest classification accuracy.

The backward elimination initially includes all variables for classification and selects a variable to remove
from the set of all variables, which can improve classification accuracy. Continue removing a variable from the

set of variables until there is no improvement in classification accuracy. The chi-square test, which we
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discussed in section 6.2.2 is often used for this backward selection of variables in naive Bayes classification. A
stepwise method also selects variables using the forward selection method while examining whether the
variables already selected can be removed. However, it is not easy to verify whether the ‘optimal’ variable

selection was made regardless of the method used. For more information, please refer to the references.

Characteristics of Bayes classification model

The characteristics of Bayes classification are summarized as follows.

1) Since the Bayes classification model classifies using the posterior probability, which is calculated by the
prior probability and the likelihood probability distribution of each group, the risk of overfitting the model
is low but robust.

2) Bayes classification model can perform stable classification even when there are incomplete data, outliers,

and missing values.

6.3.4 R practice - Naive Bayes classification

To analyze naive Bayes classification using R, you need to install a package called naivebayes. From the
main menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear.
Here, select ‘0-Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select
‘naivebayes’ and click ‘OK’. 'naivebayes' is a package for modeling of Naive Bayes model in which predictors
are assumed to be independent within each class label. General usage and key arguments of the function are

described in the following table.

Fit naive Bayes model in which predictors are assumed to be independent within each class label.

## Default S3 method:

naive_bayes(x, y, prior = NULL, laplace = 0, usekernel = FALSE, usepoisson = FALSE, ...)

## S3 method for class ‘formula’

naive_bayes(formula, data, prior = NULL, laplace = 0, usekernel = FALSE, usepoisson = FALSE, subset,
na.action = stats::na.pass, ...)

X matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.
y class vector (character/factor/logical)
formula an object of class "formula” (or one that can be coerced to "formula”) of the form: class ~

predictors (class has to be a factor/character/logical).
data matrix or dataframe with categorical (character/factor/logical) or metric (numeric) predictors.

prior vector with prior probabilities of the classes. If unspecified, the class proportions for the training
set are used. If present, the probabilities should be specified in the order of the factor levels.

laplace value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing).

usekernel logical; if TRUE, density is used to estimate the class conditional densities of metric predictors.
This applies to vectors with class "numeric”. For further details on interaction between usekernel
and usepoisson parameters please see Note below.

usepoisson  logical; if TRUE, Poisson distribution is used to estimate the class conditional PMFs of integer
predictors (vectors with class "integer").

subset an optional vector specifying a subset of observations to be used in the fitting process.

na.actioncp a function which indicates what should happen when the data contain NAs. By default (na.pass),
missing values are not removed from the data and are then omited while constructing tables.
Alternatively, na.omit can be used to exclude rows with at least one missing value before
constructing tables.
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An example of R commands for a naive Bayes classification in R with purchase as the dependent variable

of card data and other variables as independent variables is as follows.

> install.packages('naivebayes’)
> library(naivebayes)
> nbfit <- naive_bayes(Purchase ~ Gender + Age + Income + Credit, data = card)

Call:
naive_bayes.formula(formula = Purchase ~ Gender + Age + Income + Credi
t, data = card)

A priori probabilities:
No Yes
0.6 0.4

Gender No Yes

Female 0.6666667 0.5000000
Male ©.3333333 0.5000000

Age No Yes
20s 0.6666667 0.2500000
30s 0.3333333 0.7500000

Income No Yes
GE2000 0.6666667 ©.7500000
LT2000 ©.3333333 0.2500000

Credit No Yes
Bad ©.2500000 0.0000000
Fair ©.5833333 0.5000000
Good 0.1666667 ©.5000000

If you want to classify the group of the card data using this naive Bayes model with posterior probabilities, R

commands are as follows.

> pred <- predict(nbfit, card, type = 'prob")"
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No Yes
[1,] ©.8057554 0.1942446043
[2,] ©.2084691 0.7915309446
[3,] ©.8468809 0.1531190926
[4,] ©.8468809 0.1531190926
[5,] ©.9994378 0.0005621838
[6,] ©.4796574 0.5203426124
[7,] ©.2084691 0.7915309446
[8,] ©.8057554 0.1942446043
[9,] ©.6124402 0.3875598086
[10,] ©.3154930 0.6845070423
[11,] ©.2084691 ©.7915309446
[12,] ©.8924303 0.1075697211
[13,] ©.3154930 0.6845070423
[14,] ©.4087591 ©.5912408759
[15,] ©.2084691 ©.7915309446
[16,] ©.4796574 ©.5203426124
[17,] ©.9991570 ©.0008430387
[18,] ©.9983153 0.0016846571
[19,] ©.1163636 0©.8836363636
[20,] ©.8057554 ©.1942446043

To make a classification crosstable, you can create a vector of prediction and use table command as below.

Using this classification table, accuracy of the model is calculated as 0.7 which is (8+6) / (8+4+2+6).

> pred? <- predict(nbfit, card) copy r command

> pred2 copy r command

[1] No Yes No No No Yes Yes No No Yes Yes No Yes Yes Yes Yes N
o No Yes
[20] No
Levels: No Yes

> classtable <- table(Purchase, pred2) copy r command
> classtable copy r command
pred2
Purchase No Yes
No 8 4
Yes 2 6
> sum(diag(classtable)) / sum(classtable) [1] 0.7 copy r command

6.4 Evaluation and comparison of a classification
model

6.4.1 Evaluation of a classification model

Suppose there are two groups Gi, G2, and there are n number of data whose group affiliation is known. As
we discussed in section 6.1.1, if a classification model is used to classify each data, the actual group of data and

the group classified by the model can be compared and summarized in Table 6.4.1.

Table 6.4.1 Table for the test results of the actual group and the classified group

Classified group

file:///D:/estat/eLearning/en/DataScience/chapter06.html

38/49



3/15/25, 2:54 AM Chapter 6

G1 G Total
Actual group G, fin f1o fu + fi2
G2 fa1 fa2 for + fa
Total n

Here, f;; means the number of data of the group G; classified into the group G ;. The number of data correctly
classified out of the total data is fi1; + f22, and the number of data incorrectly classified is fi2 + f21. As we
defined in the section 6.1.1, the accuracy of the classification model is the ratio of the number of correctly
classified data out of the total number of data, and the error rate is the ratio of the number of incorrectly

classified data out of the total number of data.

A  fut fe

ccuracy = ———=
n

Error rate = M
n

The accuracy and error rate can be considered reasonable measures if the risk of misclassification of the group
G1, fi12, and the risk of misclassification of the group Gs, fo1, are the same. However, in real problems, the
risk of misclassification may be different for each group. For example, consider two types of misclassification
that a doctor misclassifies a cancer patient as a healthy person and a doctor misclassifies a healthy person as a
cancer patient. The former case has a greater risk of misclassification than the latter because it carries the risk
of shortening life. When the risk of misclassification is different, the following measures called sensitivity,
specificity, and precision are used.

e fu
Sensitivity = ————
fui + fi2

e fo2
Specificity = ————
Y Jo1 + fao
Precision = L
fu+ fa

In the example above, sensitivity is the rate at which actual cancer patients are classified as cancer patients,
specificity is the rate at which healthy people are classified as healthy people, and precision is the rate at which
actual cancer patients are classified among classified as cancer patients. Accuracy can be expressed as the
weighted sum of sensitivity and specificity.

(Sensitivity) +

(Specificity)

f1u1 + fi2
Accuracy = ————
n

fo1 + fo2
n

Lift chart, confusion matrix, expected profit and ROC curve are graphs that evaluate classification models

using sensitivity and specificity.
Lift Chart

Assume that the results of a classification model are expressed as continuous values, such as the posterior
probability of a Bayes classification model, and that a large posterior probability means a high probability of
being classified as group 1. Suppose we arrange all data in descending order of posterior probability and
observe the top 10% of the data. In that case, the rate of classifying the actual group 1, as group 1 will be very
high if the classification model is good. The rate of group 1 among the entire data is called the baseline

response (%), and the sensitivity of classifying actual group 1 as group 1 for the top 10% data is called the
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upper 10% response. The response rate of the top 10% data compared to the baseline response rate is called the

lift or improvement of the top 10%.

Response rate of top 10%

Top 10% lift =
op 10% lift Baseline response rate

As a measure of the classification model, the lift is to compare how much the response rate of the top p% of
data has improved to the response rate of the entire data.

Example 6.4.1 Consider the naive Bayes classification model for the survey data in Example 6.3.3. The
survey data and their classification results with the posterior proability of each group are summarized in
Table 6.4.2. Find the lift table and draw lift chart.

Table 6.4.2 Survey data and classification results with posterior probability of each group

Number Age Income Credit Purchase Classification Posterior Posterior
(unit USD) Group 1: No  Group 2: Yes
1 20s LT2000 Fair Yes No 0.862 0.138
2 30s GE2000 Good No Yes 0.165 0.835
3 20s GE2000 Fair No No 0.806 0.194
4 20s GE2000 Fair Yes No 0.806 0.194
5 20s LT2000 Bad No No 1.000 0.000
6 30s GE2000 Fair No Yes 0.409 0.591
7 30s GE2000 Good Yes Yes 0.165 0.835
8 20s LT2000 Fair No No 0.862 0.138
9 20s GE2000 Good No No 0.542 0.458
10 30s GE2000 Fair Yes Yes 0.409 0.591
11 30s GE2000 Good Yes Yes 0.165 0.835
12 20s LT2000 Fair No No 0.862 0.138
13 30s GE2000 Fair No Yes 0.409 0.591
14 30s LT2000 Fair Yes No 0.509 0.491
15 30s GE2000 Good Yes Yes 0.165 0.835
16 30s GE2000 Fair No Yes 0.409 0.591
17 20s GE2000 Bad No No 1.000 0.000
18 20s GE2000 Bad No No 1.000 0.000
19 30s GE2000 Good Yes Yes 0.165 0.835
20 20s LT2000 Fair No No 0.862 0.138
Answer

In order to make the lift table, we need first to arrange all data in descending order of the 1st group
posterior probability, and then organize them into 10 data categories (2 data each category is 10%). Since
there are 12 data in group 1 and 8 data in group 2 out of the total 20 data, the baseline response rate of
this data is % which is 60%. In each data category, the number of the 1st group data, the cumulated
number of data, and the cumulated number of the 1st group data are counted to calculate the response
rate, cumulated response rate, and lift of each category. The captured column is the ratio of the number
of the 1st group out of the number of data in each category. The % response and Lift of the 1st category
which is the upper 10% of data are calculated as follows.
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upper 10% Response =

upper 10% Lift =

Number of 1st group classified as group 1 in upper 10%

Chapter 6

x 100

Number of data in upper 10%

upper 10% Response "

Baseline response

100

Table 6.4.3 is the lift table and, and the lift chart is as in <Figure 6.4.1>.

Category
upper %

upper
(0,10%]
(10,20%]
(20,30%]
(30,40%]
(40,50%]
(50,60%]
(60,70%]
(70,80%]
(80,90%]

(90,100%]

<Figure 6.4.1> is a chart using the lift table in Table 6.4.3. The upper percentile of of the data is on the
x-axis, and the response rate, which is the rate of actually group 1 when the data corresponding to the

Number of

data

Table 6.4.3 Lift table for training data using the data in Table 6.4.2

Number of  Cumulated  Cumulated
1st group num. of num. of 1st
data group

2 2

4 4

6 5

8 7

10 8

12 9

14 11

16 11

18 12

20 12

Captured

1.0

1.0

0.5

1.0

0.5

0.5

1.0

0.0

0.5

0.0

Response

1.00

1.00

0.50

1.00

0.50

0.50

1.00

0.00

0.50

0.00

upper percentile category are considered as group 1, is plotted on the y-axis.

18t group response rate

Lift chart for training data

0.8+

0.8

0.7 4

0.6 =

0.5+

0.4+

0.3+

0.2~
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0% 20% 30% 40% S0% 60% 0%  B0%  90% 100%

data group (upper data %)

<Figure 6.4.1> Lift chart for training data
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Since there is a small number of data in this example, we cannot see a general pattern of response rate.
In general, response rates show a decreasing pattern by upper % categories and a response rate becomes
below of the baseline response at one upper % category. We can also observe a category which the lift
becomes below 1. This upper % category can be used which value of the posterior probability will be the
boundary to decide a group. A lift chart is also drawn for both training and test data, which is called a
cross-lift chart. If it is a stable classification model, the lift charts of the training and test data should
not be significantly different.

We can use a lift chart to compare two classification models as shown in <Figure 6.4.2>. Model M;
classifies group 1 more accurately than model M, at each percentile of data, so model M; can be said to be
better than M.

0.5

0

0% 50% 10C
<Figure 6.4.2> An example of a lift chart for comparing two classification models

Confusion matrix

The lift table sorts the entire data in descending order of posterior probability, divides them into several
categories with similar numbers of data, and then shows the response rate, lift, of each category of data. The
confusion matrix divides the posterior probability values into several cut-off values, and then shows the
correct classification, misclassification, accuracy, sensitivity, and specificity of the entire data for each cut-off
value. The confusion matrix is often used to determine the cut-off value of the posterior probability to
determine the group. Generally, the cut-off value for determining the group is mainly accuracy, but sensitivity

and specificity should also be carefully examined.

Example 6.4.2 Consider the naive Bayes classification model for the survey data in Example 6.3.3. The
survey data and their classification results with the posterior proability of each group are summarized in
Table 6.4.2. Find the confusion matrix and draw a graph of sensitivity, specificity and accuracy for each
category of posterior probability.

Answer

Consider a classification table created by dividing the posterior probability value into 0.1 units by the
cut-off value. For each cut-off value, data smaller than this value are classified into group 2, and data
larger than this value are classified into group 1. Table 6.4.4 is the confusion matrix which shows the
correct classification, misclassification, accuracy, sensitivity, and specificity of the entire data for each
cut-off value. <Figure 6.4.3> is the confusion matrix graph.

Table 6.4.4 Confusion matrix
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Number Posterior Number f11 f12 f21 f22 Accuracy Sensitivity Specificity
probability of data

1 0.00 20 12 0 8 0 0.600 1.000 0.000
2 0.10 20 12 0 8 0 0.600 1.000 0.000
3 0.20 20 1 1 4 4 0.750 0.917 0.500
4 0.30 20 11 1 4 4 0.750 0.917 0.500
5 0.40 20 11 1 4 4 0.750 0.917 0.500
6 0.50 20 8 4 3 5 0.650 0.667 0.625
7 0.60 20 7 5 2 6 0.650 0.583 0.750
8 0.70 20 7 5 2 6 0.650 0.583 0.750
9 0.80 20 7 5 2 6 0.650 0.583 0.750
10 0.90 20 3 9 0 8 0.550 0.250 1.000
1 1.00 20 0 12 0 8 0.400 0.000 1.000
I e

» specificity

0.8+

0.8

0.7 4

0.6 =

0.5

0.4 Y
03]
0z

0.1 4

0.1 02 03 04 0.5 0.6 0.7 0.8 09

&
v
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=2 &

<Figure 6.4.3> Confusion matrix graph

ROC graph

When the result of a classification model can be expressed as a continuous value, such as the posterior
probability of a Bayes classification model or a logistic regression model, a receiver operating characteristic
(ROC) graph can be drawn. The ROC graph is a graph with (1 - specificity) of a classification model on the x-
axis and sensitivity on the y-axis. It can be said that the sensitivity is the true positive rate (TPR) and (1 -
specificity) is the false positive rate (FPR) which is the rate of misclassifying data from group 2 into group 1. A
point on the ROC graph represents the result of a classification model when a critical value of the posterior

probability is used. If we change the critical value, the classification result will be changed and a new point on
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the ROC graph is created. In other words, the ROC graph examines the changes in FPR and TPR when the

critical value of the posterior probability is changged.

<Figure 6.4.4> is a ROC graph of two classification models, M; and Ms. In the ROC graph, the point
(FPR=0, TPR=0) represents a classification model that classifies all points into group 2, the point (FPR=1,
TPR=1) classifies all data into group 1, and the point (FPR=0, TPR=1) represents an ideal model that does not
misclassify group 2 data into group 1 and correctly classifies all group 1 data. Therefore, a good classification
model should have the classification results located in the upper left corner of the ROC graph. The diagonal
line in the figure shows an exceptional model in which both the TPR and FPR ratios are the same, that means a
special case in which data are randomly classified into groups 1 and 2 with a fixed probability. In this case,
group 1 data is classified into group 1 with probability p (TPR = p), and group 2 data is also classified into
group 1 with probability p (FPR = p). The ROC graph is helpful in comparing the performance of several
classification models. In <Figure 6.4.4>, the ROC graph of classification model M; is located upper on the left
than that of classification model M. This means that M; has the correct classification rate TPR is always better
than the misclassification rate FPR for group 1, so model M; can be said to be better than model M,. In this
case, one classification model is always better than another classification model, but there are also cases where

the ROC graphs of the two models intersect so that neither model can always be said to be better.

TPR = Sensitivity

0.5

0 0.5 1
FPR = 1 - Specificity

<Figure 6.4.4> ROC graph for two classification models M; and M,

The area under the ROC graph is also called the c-statistic, and it can be used to compare how good the
performance of the model is on average. In the case of an ideal model (FPR=0, TPR=1), the area is 1, and in
the case of a random classification where the classification result of the model is located on the diagonal, the
area is % If the area under the ROC graph of one model is larger than that of another model, it can be said to

be a better model on average.

To draw a ROC graph, first, sort in ascending order of the posterior probability of group 1 and classify the
entire data using each posterior probability value as the cut-off value for classifying the two groups, calculate

the sensitivity and specificity, and then draw a connecting line using each sensitivity as the y-axis and (1 -
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specificity) as the x-axis. If you draw a ROC graph in this way, the area under the curve, c-statistic, can be

easily obtained. Let's look at the following example to see how to draw a ROC graph.

Example 6.4.3 Consider the naive Bayes classification model for the survey data in Example 6.3.3. The
survey data and their classification results with the posterior proability of each group are summarized in
Table 6.4.2. The results are sorted in ascending order of the posterior probability of group 1. Calculate
TPR and FPR for ROC graph and draw the ROC graph of this classification model.

Answer

To draw a ROC graph, sort in ascending order of the posterior probability of group 1. First, if we classify
all data into group 1, the number of group 1 data classified into group 1 is fi; = 12, and the number of
group 2 data classified into group 1 is fa1 = 8. Next, if we classify the first data into group 2 and the
second data and above into group 1, we get fi; = 11, fi» = 1,f51 = 8. Next, if we classify the first and
second data into group 2 and the third data and above into group 1, we get fi11 = 11, fi2 =1,fo1 =7, fo2 =
1. If we classify in a similar way and obtain TPR and FPR, they are as shown in Table 6.4.5. The rightmost
column in the table is the case where all data is classified into group 2. If you draw an ROC graph using
the TPR and FPR in this table, it will look like <Figure 6.4.5>.

Table 6.4.5 Calculation of TPR and FPR for ROC graph

Number Group Posterior fi1 fi2 fq fy2 TPR FPR
probability
0 12 0 8 0 1.000 1.000
1 No 0.165 11 1 8 0 0.917 1.000
2 Yes 0.165 11 1 7 1 0.917 0.875
3 Yes 0.165 11 1 6 2 0.917 0.750
4 Yes 0.165 11 1 5 3 0.917 0.625
5 Yes 0.165 11 1 4 4 0.917 0.500
6 No 0.409 10 2 4 4 0.833 0.500
7 Yes 0.409 10 2 3 5 0.833 0.375
8 No 0.409 9 3 3 5 0.750 0.375
9 No 0.409 8 4 3 5 0.667 0.375
10 Yes 0.509 8 4 2 6 0.667 0.250
11 No 0.542 7 5 2 6 0.583 0.250
12 No 0.806 6 6 2 6 0.500 0.250
13 Yes 0.806 6 6 1 7 0.500 0.125
14 No 0.862 5 7 1 7 0.417 0.125
15 No 0.862 4 8 1 7 0.333 0.125
16 Yes 0.862 4 8 0 8 0.333 0.000
17 No 0.862 3 9 0 8 0.250 0.000
18 No 1.000 2 10 0 8 0.167 0.000
19 No 1.000 1 11 0 8 0.083 0.000
20 No 1.000 0 12 0 3 0.000 0.000
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Receiver operating characteric (ROC) plot for training data

1.0 * ROC
) | & baseline
[ -
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0.8

true positive rate (TPR)
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false positive rate (FPR: 1 - specificity)

<Figure 6.4.5> ROC graph

6.4.2 Comparison of classification models

In order to classify data, rather than applying one classification model, several models are tried and the
most appropriate model for the given data is selected. The comparison of models is made using a comparison
of accuracy, but the difference in accuracy between the two models may not be statistically significant. In this
section, we will look at the confidence interval estimation for the accuracy of a classification model and the

statistical method for comparing the accuracy of two models.

In addition to accuracy, the comparison of two classification models should also consider the speed of
processing the algorithm on a computer, robustness for evaluating the impact of noisy data or missing values,
scalability for efficiently building the model even when a large amount of data is given, and interpretability of
the model results.

Confidence interval for accuracy

Let p be the actual accuracy of the model and n be the number of test data set. If we let the random variable
X be the number of data correctly classified by the classification model, X is a binomial random variable with
parameters n and p. In this case, the accuracy, p = %, of the classification experiment has a mean of p and a
variance of @. If n is sufficiently large, the binomial distribution can be approximated by the normal
distribution, so the 100(1-a)% confidence interval for the actual accuracy p can be obtainable using the

following probability statement.

pP—Dp
vp(L—p)

Here, Z2 means the right 9 * 100% quantile of the standard normal distribution, and when the confidence

P(—Z%< <Z%):1—a

level is 95%, Z2 = 1.96. If we rearrange this equation, the confidence interval for the accuracy p can be shown
as follows.
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(@nxp+23) + Z%\/Z§+4nxﬁ_4nxﬁz

2n + 272
2

Example 6.4.4 When a classification model was applied to 100 test data, it had an accuracy of p = 80%.
Estimate the confidence interval of actual accuracy with a 95% confidence level.

Answer

When the confidence level is 95%, a = 0.05, so Z_{\frac{0.05}{2}} = 1.96. The accuracy of the experiment
P = 0.8, and the number of data n = 100, so by substituting the confidence interval formula, we get the
following.

(2 x 100 x 0.8 + 1.962) + 1.964/1.962 + 4 x 100 x 0.8 — 4 x 100 x 0.82
2 x 100 + 2 x 1.962

That is, the 95% confidence interval of the actual accuracy is (71.1%, 86.7%).

Comparison of accuracy of two models

Suppose that two classification models M; and M; are applied to two independent test data sets of which
their numbers of data are ny and ns, and the accuracies p; and P are measured respectively. Let us find out
how to test whether the accuracies p; and p, are statistically significant. If n; and ns are sufficiently large, the
accuracy p; and po will approximately follow normal distributions, and the difference in accuracy p; — po will

also approximately follow a normal distribution with mean p; — py and variance as follows.

p1(1 —p1) N D2(1 — P2)
ni Ny

Therefore, the (1 — a)% confidence interval of true accuracy difference, p; — po, is as follows.

5.(1 — 5 (17
(P1—p2) £ Zg \/pl( p1) + p2(1 — p2)
ni g

If this confidence interval includes 0, we can conclude that the accuracies of the two models are statistically the

same.

Example 6.4.5 If a classification model M; shows 85% accuracy on 50 test data and classification model
M, shows 75% accuracy on 500 test data, can we conclude that classification model M; is a better model
than M,?

Answer

The number of data applied to model M; is n; = 50 and the accuracy is p; = 0.85, the number of data
applied to model Ms is n2 = 500 and the accuracy is p» = 0.75, Therefore, the 95% confidence interval is
as follows.

(0.85 — 0.75) =+ 1,96\/ 0850-08) | 00075)

0.10 £1.96x0.0541

Therefore, the 95% confidence interval is (-0.2060, 0.0060). This confidence interval includes 0, so the
difference in observed accuracy is not statistically significant. In other words, the true accuracies of
model M; and model M, are not statistically significant, so we cannot say which classification model is
better.

Generalized error considering model overfitting

file:///D:/estat/eLearning/en/DataScience/chapter06.html 47/49



3/15/25, 2:54 AM Chapter 6

A good classification model is a model that really classifies well when applied to actual data. However, a
model that shows satisfactory accuracy in test data may have poor classification accuracy when applied to
actual data. This case is called a model overfitting, and it often occurs in decision trees or neural network
models. There are various causes of overfitting, but it can occur when there is noisy data in the data or when
the number of nodes in the decision tree model is set too high. It can also occur when the training data, which is
a part of the entire data set, does not sufficiently represent the entire set. In order to prevent overfitting, the
generalized error, which is the sum of the experimental error of the model and the penalty term for the
complexity of the model, is used to compare and select a model among several models. For example, suppose
that a decision tree T' with k leaves has an error rate at node t;, e(¢;), when classifying n(¢;) data. The

generalized error ey(T") of this decision tree T' can be defined as follows.

Siilet:) + Q(t:)]
ey(T) =
o) Zf:ln(ti)
_ e(T) + QT)

Zf=1 n(t;)
Here, (t;) is the penalty term in each node t;, e(T') is the overall error rate, and Q(T') is the overall penalty

term. If the penalty term of each node is Q(¢;) = 0.2, Q(T) becomes (the number of nodes) x 0.2, so the

generalized error increases as the number of nodes increases. Therefore, if there are two decision tree models

with similar error rates, the generalization error of the model with the smaller number of nodes is smaller.

6.5 Exercise

6.1 Ten data of two groups (+ group or - group) for two binary variables (A and B) are as follows.

A B Group
T F +
T T +
T T +
T F

T T +
F F

F F +
F F

T T +
T F

1) Calculate the information gain using the Gini coefficient for all ten data. Calculate the information
gain using the Gini coefficient for variable A and B. Which variable's branching is better using these
results in the decision tree?

2) Calculate the information gain using the entropy coefficient for all ten data. Calculate the
information gain using the entropy coefficient for variable A and B. Which variable's branching is
better using these results in the decision tree? Compare the result with 1)

3) Find a decision tree using the entropy coefficient to classify the group. When the values of variables
A and B of a test data are T and F, respectively, classify the data using the decision tree.

4) Let the prior probability of the + group be 0.6 and the prior probability of the - group be 0.4. Find a
naive Bayes classification rule to classify the group. When the values of variables A and B of a test
data are T and F, respectively, classify the data using the naive Bayes classification.

5) Find the lift chart, confusion matrix, and ROC curve in 4)
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6.2 When we surveyed 20 people who visited a particular department store, 10 people made
purchases, and 10 people did not make purchases. The survey results of these 20 people's
gender (M: male, F: female, car ownership (S: small, M: medium, L: large), house ownership (Y:
yes, N: no), and purchases (Y: yes, N: no) were as follows.

Gender Car House Purchase
M M N Y
F M Y N
F L Y Y
F L Y N
F M N N
F M N N
F L Y Y
M M Y Y
F L Y N
M L N Y
F M Y Y
F M Y N
M M N N
F M N Y
F S Y N
F S N N
M S N Y
M M N N
M M N Y
M S N N
F L Y Y

1) Find a decision tree using the entropy coefficient to classify the group. When a customer is female,
a large car owner, and has a house, classify the customer using the decision tree.

2) Let the prior probability of the purchasing group be 0.6 and the non-purchasing group be 0.4. Find a
naive Bayes classification rule to classify the group. When a customer is female, a large car owner,
and has a house, classify the customer using the naive Bayes classification.

3) Find the lift chart, confusion matrix, and ROC curve in 2)
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