
Chapter 7. Supervised machine learning for
continuous data
[presentation] (./pdf/ppt7.pdf) [book] (./pdf/book7.pdf)

7.1 Bayes classification model - Continous data
7.1.1 R practice - Bayes classification

7.2 Logistic regression model
7.2.1 R practice - Logistic regression

7.3 Nearest neighbor classification model
7.3.1 R practice - Nearest neighbor classification

7.4 Neural network model
7.4.1 Single-layer neural network
7.4.2 Multilayer neural network
7.4.3 Artificial intelligence
7.4.5 R practice - Neural network

7.5 Support vector machine model
7.5.1 Linear support vector machine
7.5.2 Nonlinear support vector machine
7.5.3 R practice - Support vector machine

7.6 Ensemble model
7.6.1 Bagging
7.6.2 R practice - Bagging
7.6.3 Boosting
7.6.4 R practice - Boosting
7.6.5 Random Forest
7.6.6 R practice - Random forest

7.7 Classification of multiple groups
7.8 Exercise

CHAPTER OBJECTIVES

Classification analysis is a technique that uses data with known group membership to create a model to
determine the group of data with unknown group membership. This chapter introduces the classification analysis
for continuous data as follows.

• Bayes classification model, which is the basis of statistical classification analysis.
• Logistic regression model in case of two groups uses multiple linear regression analysis.
• Nearest neighbor classification model, which utilizes distances between observations.
• Neural network model, which is a nonlinear optimization model.
• Support vector machine model, which is a mathematical classification model.
• Ensemble models that synthesize the results of several classification models.

7.1 Bayes Classification Model - Continuous data
In section 6.3.1, we studied the Bayes classification model, which classifies data into groups with high

probability by calculating the posterior probability using Bayes theorem. In section 6.3.2, we studied the naive
Bayes classification model, which is an application of Bayes classification to categorical data when variables can
be assumed to be independent. Suppose there are random variables . Let the priorm X = (X1,X2, . . . ,Xm)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 1/57

file:///D:/estat/eLearning/en/DataScience/pdf/ppt7.pdf
file:///D:/estat/eLearning/en/DataScience/pdf/ppt7.pdf
file:///D:/estat/eLearning/en/DataScience/pdf/book7.pdf
file:///D:/estat/eLearning/en/DataScience/pdf/book7.pdf

probabilities of number of groups, , be , and let the likelihood probability
distribution function for each group be . Given the observation data for
classification, the posterior probability that this data comes from the group is as follows.

The Bayes classification rule, which uses the posterior probability, is as follow.

Bayes Classification - multiple groups
Suppose that prior probabilities of number of groups, , are , and
likelihood probability distribution functions for each group are . Given the
observation data for classification, let the posterior probabilities that comes from each group be

. The Bayes classification rule is as follows.

 'Classify into a group with the highest posterior probability'

If we denote the likelihood probability functions as , since the denominators in the
calculation of posterior probabilities are the same, the Bayes classification rule can be written as follows.

 'If for all ≠ , classify into group '

If there are only two groups and , the Bayesian classification rule is expressed as follows.

 'if , classify into group , else into group '

When there are sample data, we can estimate the likelihood probability distribution from the sample, the
Bayes classification rule can also be estimated using the likelihood distribution. Therefore, the Bayes classification
rule can appear in many variations depending on the estimation method of the likelihood probability distribution.
Estimating the likelihood probability distribution using samples can be done using either a parametric method,
such as maximum likelihood estimation, or a nonparametric method. In the case of categorical data, a
multidimensional distribution estimated from the sample is often used, and in the case of continuous data, a
multivariate normal distribution is often used. For more information, please refer to the related references.

Example 7.1.1 - Bayes classification with one continuous variable
A survey of customers at a computer store showed the prior probabilities of the purchasing group () and
the non-purchasing group () are = 0.4 and = 0.6, respectively. Suppose that the likelihood
distribution of the age in the purchasing group is a normal distribution with a mean of 35 and a standard
deviation of 2, , and the non-purchasing group is a normal distribution with a mean of 25 and a
standard deviation of 2, .
 If a customer who visited this store on a certain day is 30 years old, classify the customer using the Bayes
classification model whether he will purchase the product or not.

Answer

The functional form of the likelihood probability distribution of the purchasing group and the non-
purchasing group are as follows.

Therefore, the Bayes classification rule is as follows.

k G1,G2, . . . ,Gk P(G1),P(G2), . . . ,P(Gk)

P(X|G1),P(X|G2), . . . ,P(X|Gk) x

P(Gi|x) Gi

P(Gi|x) =
P(Gi) × P(x|Gi)

P(G1) × P(x|G1) + P(G2) × P(x|G2) + ⋯ + P(Gk) × P(x|Gk)

k G1,G2, . . . ,Gk P(G1),P(G2), . . . ,P(Gk)

P(X|G1),P(X|G2), . . . ,P(X|Gk)

x x

P(G1|x),P(G2|x), . . . ,P(Gk|x)

x

f1(x), f2(x), . . . , fk(x)

P(Gk)fk(x) ≥ P(Gi)fi(x) k i x Gk

G1 G2

f1(x)
f2(x) ≥ P(G2)

P(G1) x G1 G2

fi(x)

G1

G2 P(G1) P(G2)

N(35, 22)
N(25, 22)

G1

G2

P(x|G1) = f1(x) =
1

√2π 2
exp{−

(x − 35)2

2 × 22
}

P(x|G2) = f2(x) =
1

√2π 2
exp{−

(x − 25)2

2 × 22
}

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 2/57

If we organize the above equation by taking the log, the classification rule is as follows.

Therefore, the customer whose age is 30 is classified as a non-purchasing group ().

If there are two groups, and , and the likelihood probability distributions and for each group
follow the multivariate normal distribution and , the classification rule is as follows.

 is a quadratic classification function. If the covariances of groups and are the same (i.e.,
), the classification function becomes the following linear classification function ,

which is widely used in the classification of continuous data.

Since the two means, and , and covariance matrix of the two populations are generally unknown, an
estimated classification function is used using the sample means, and , and sample covariance matrix from
each population.

Example 7.1.2 Consider a survey of 20 customers at a computer store on age (), monthly income (),
and purchasing status, as shown in Table 7.1.1. Assume that these continuous variables are multivariate
normal distributions with the same covariance. Find a Bayes classification function and classify a customer
who is 33 years old and has a monthly income of 200, whether he will purchase a computer or not.

Table 7.1.1 Survey of customers on age, income, and purchasing status

Number Age Income
(unit 10,000 won)

Purchase

1 25 150 Yes

2 34 220 No

3 27 210 No

4 28 250 Yes

5 21 100 No

6 31 220 No

7 36 300 Yes

8 20 100 No

9 29 220 No

10 32 250 Yes

11 37 400 Yes

12 24 120 No

13 33 350 No

14 30 180 Yes

If
f1(x)

f2(x)
= exp{−

(x − 35)2

2 × 22
−

(x − 25)2

2 × 22
} ≥

P(G2)

P(G1)
=

0.6

0.4
, classify x into G1, else G2.

If x ≥ 30.16, classify x into G1, else G2.

G2

G1 G2 f1(x) f2(x)

N(μ1, Σ1) N(μ2, Σ2)

If dQ(x) = −
1

2
ln

|Σ2|

|Σ1|
−

1

2
(x − μ1)′Σ−1

1 (x − μ1) +
1

2
(x − μ2)′Σ−1

2 (x − μ2) ≥ ln
P(G2)

P(G1)
, classify x into G1, else G2.

dQ(x) G1 G2

Σ1 = Σ2 = Σ dQ(x) dL(x)

If dL(x) = (μ1 − μ2)′ Σ−1 [x −
1

2
(μ1 + μ2)] ≥ ln

P(G2)

P(G1)
, classify x into G1, else G2.

μ1 μ2 Σ

x1
–x2
–

S

If dL(x) = (x1 − x2)′ S−1 [x −
1

2
(x1 + x2)] ≥ ln

P(G2)

P(G1)
, classify x into G1, else G2.––––

X1 X2

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 3/57

15 38 350 Yes

16 32 250 No

17 28 240 No

18 22 220 No

19 39 450 Yes

20 26 150 No

Answer

The sample means of age and income of each group, and , and sample covariance matrix are
calculated as follows.

, and is as follows.

Assume that the prior probability of non-purchasing group is = 0.6, and the prior probability of
purchasing group = 0.4, the sample linear classification function is as follows.

If the visiting customer's age is 33 and income is 200, the classification function becomes as follows.

Therefore, the customer is classified into the non-purchasing group .

[Bayes Classification Analysis]

x1
–x2
–

S

x1 = [], x2 = [], S = []–27.250

200.000
–33.125

291.250

31.621 470.105

470.105 9129.211

x1 − x2
––S−1 (x1 − x2)′S−1––

x1 − x2 = [], S−1 = [], (x1 − x2)′S−1 = []––−5.875

−91.25

0.134895 −0.006946

−0.006946 0.000467
––−0.15865

−0.00182

P(G1)
P(G2)

If (−0.15865) × x1 + (−0.00182) × x2 + 5.64297 ≥ 0, classify x = (x1,x2) into G1, or G2.

(−0.15865) ∗ (33) + (0.00182) ∗ (200) + (5.64297) = 0.04251

G1

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 4/57

 Bayes Classification Analysis

 Variable Name Data Input
 Y Purchase Yes,No,No,Yes,No,No,Yes,No,No,Yes,Yes,No,No,Yes,Yes,No,No,No,Yes,No

 X1 Age 25,34,27,28,21,31,36,20,29,32,37,24,33,30,38,32,28,22,39,26

 X2 Income 150,220,210,250,100,220,300,100,220,250,400,120,350,180,350,250,240,220,450

 X3

 X4
 X5

 Data partition (Train 100 % : Test 0 %)
 Prior probability sample proportion equal proportion
 Execute Scatter Plot Matrix Parallel Graph Erase Data

 Graph Save Classification Table Table Save

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 5/57

If we can estimate the likelihood probability distribution, Bayes classification can be applied even when the
variables are continuous or discrete. If continuous and discrete variables are mixed, the naive Bayes classification
can be applied by discretizing the continuous variables.

Variable selection

When there are many variables, selecting only the variables that help classify the groups can reduce the
parameter estimation problem and increase accuracy. Stepwise classification analysis is selecting appropriate
variables stepwise and classifying them. Variable selection generally uses variables that can best explain group
variables, that is, variables with high discriminatory power between groups. For example, when performing an
analysis of variance to compare the means between groups, variables with high F values ​​(or t values ​​in the case of
two groups) are selected. This type of variable selection can be done by forward selection, which adds variables
with high discriminatory power one by one without selecting any variables, and backward elimination, which
selects all variables and then removes variables with low discriminatory power one by one. There is also a
stepwise method that selects variables using the forward selection method while examining whether the variables
already selected can be removed. However, it is not easy to verify whether the ‘optimal’ variable selection has
been made regardless of the method used. For more information, please refer to the references.

Characteristics of Bayes classification

The characteristics of Bayes classification are summarized as follows.

1) Since the Bayes classification model classifies using the posterior probability, which is calculated by the prior
probability and the likelihood probability distribution of each group, the risk of model overfitting is low and
robust.

2) Bayes classification model can perform stable classification even when incomplete data, outliers, and missing
values exist.

7.1.1 R practice - Bayes classification

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 6/57

To analyze Bayes classification using R, we need to install a package called MASS. From the main menu of R,
select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear. Here, select ‘0-Cloud
[https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘MASS’ and click ‘OK’. 'MASS'
is a package for modeling of Bayes classification model. General usage and key arguments of the function are
described in the following table.

Fit a linear discriminant analysis model.

lda(x, ...)
S3 method for class 'formula'
lda(formula, data, ..., subset, na.action)
Default S3 method:
lda(x, grouping, prior = proportions, tol = 1.0e-4,method, CV = FALSE, nu, ...)
S3 method for class 'data.frame'
lda(x, ...)
S3 method for class 'matrix'
lda(x, grouping, ..., subset, na.action)

formula A formula of the form groups ~ x1 + x2 + ... That is, the response is the grouping factor and the right
hand side specifies the (non-factor) discriminators.

data Data frame from which variables specified in formula are preferentially to be taken.

x (required if no formula is given as the principal argument.) a matrix or data frame or Matrix
containing the explanatory variables.

grouping (required if no formula principal argument is given.) a factor specifying the class for each
observation.

prior the prior probabilities of class membership. If unspecified, the class proportions for the training set
are used. If present, the probabilities should be specified in the order of the factor levels.

tol A tolerance to decide if a matrix is singular; it will reject variables and linear combinations of unit-
variance variables whose variance is less than tol^2.

subset An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument
must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is for the procedure
to fail. An alternative is na.omit, which leads to rejection of cases with missing values on any
required variable.

method "moment" for standard estimators of the mean and variance, "mle" for MLEs, "mve" to use cov.mve, or
"t" for robust estimates based on a t distribution.

An example of R commands for a Bayes classification with purchase as the dependent variable of card data
and other variables as independent variables is as follows.

> install.packages('MASS') copy r command

> library(MASS) copy r command

> customer <- read.csv('PurchaseByCredit20_Continuous.csv', header=T, as.is=FALSE) copy r command

> attach(customer) copy r command

> Purchase

[1] Yes No No Yes No No Yes No No Yes Yes No No Yes Yes No No No Y
es
[20] No
Levels: No Yes

copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 7/57

> ldamodel <- lda(Purchase ~ ., customer) copy r command

> ldamodel

Call: lda(Purchase ~ ., data = customer)
Prior probabilities of groups:
 No Yes
0.6 0.4
Group means:
 Age Income
No 27.250 200.00
Yes 33.125 291.25
Coefficients of linear discriminants:
 LD1
 Age 0.173328870
Income 0.001994526

copy r command

If we want to classify the group of the customer data using the Bayes model, R commands are as follows.

> pred <- predict(ldamodel, customer)" copy r command

> pred$class

$class
 [1] No Yes No No No No Yes No No No Yes No Yes No Yes No No No
Yes
[20] No
Levels: No Yes

copy r command

To make a classification cross table, we can use a vector of prediction, pred$class, and Purchase with table
command as below. Using this classification table, accuracy of the model is calculated as 0.7 which is (10+4) /
(10+2+4+4).

> classtable <- table(Purchase,pred$class)

Purchase No Yes
 No 10 2
 Yes 4 4

copy r command

> sum(diag(classtable)) / sum(classtable)

[1] 0.7

copy r command

7.2 Logistic regression model
A linear regression model expresses the relationship between independent variables (explanatory variables)

 and the dependent variable (response or target variable) as a linear equation as follows.

Here, the error term is assumed to be a normal distribution with a mean of 0 and a variance of . If the target
variable has values ​​of 0 and 1 representing two groups, the above regression model is not appropriate. For
example, Let us consider a simple linear regression model to determine whether a customer will purchase a
product (= 1) or not (= 0) based on monthly income ().

If we estimate the parameters and using sample data and apply the above formula to actual test data, since the
predicted value of group becomes a continuous number, there are cases where it goes beyond the range of [0, 1].

m

X1,X2, . . . ,Xm Y

Y = β0 + β1X1 + β2X2 + ⋯βmXm + ϵ

ϵ σ2

Y

Y Y X

Y = α + βX + ϵ

α β

Y

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 8/57

The logistic regression is a model that has been modified to fit the classification of two groups by solving this
problem of the linear regression model.

When the target variable has the values ​​1 and 0, the logistic regression model is a linear regression of the log
value of the odds ratio, which is the ratio of the probability and the probability given that

, as shown below.

Here, is the natural logarithm and . If we rearrange the above equation using
, it can be written as follows.

It means that, if the coefficients and of this regression model can be estimated using the least squares method,
 can also be estimated. The estimated probability is called the posterior probability of the

group 1, and is called the posterior probability of the group 0. Data is classified into the group 1 if this
posterior probability value is greater than a critical value selected by the analyst, such as 0.5, otherwise it is
classified as group 0. The maximum likelihood estimation method is frequently used to estimate the coefficient of
the logistic regression model.

The above simple logistic regression model with one variable can be extended to have variables as follow.

If we rearrange the above equation using , it can be written as follow.

Given the data to be classified, the posterior probability is
estimated using the estimated regression coefficients of . If the estimated posterior probability is
greater than the critical value selected by the analyst, it is classified as group 1, otherwise it is classified as group
0.

Let us examine the effect of independent variable on the classification of groups in the logistic regression
model. If all other variables are constant and only the variable value is increased by 1 unit (), the
incremental odds ratio is as follows.

Therefore, when the variable increases by 1 unit, if is positive, the odds ratio increase rate is greater than 1,
so also increases. On the other hand, if is negative, the odds ratio increase rate is
less than 1, so decreases. For example, monthly income is an independent variable
and customer purchasing status is the target variable, such as purchasing a product () or not (). The
estimated logistic regression model is as follow.

In this case, if the monthly income increases by 1 unit, the odds ratio increase rate becomes = 3.82.
That is, if monthly income increases by 1 unit, the odd ratio of the probability of purchasing a product to the
probability of not purchasing it increases by 3.82 times.

P(Y = 1 |x) P(Y = 0 |x)

X = x

ln
P(Y = 1 |x)

P(Y = 0 |x)
= α + βx

ln P(Y = 0 |x) = 1 − P(Y = 1 |x)

P(Y = 1 |x)

P(Y = 1 |x) =
exp(α + βx)

1 + exp(α + βx)

α β

P(Y = 1 |x) P(Y = 1 |x)

P(Y = 0 |x)

m

ln
P(Y = 1 | x = (x1,x2, . . . ,xm))

1 − P(Y = 1 | x = (x1,x2, . . . ,xm))
= β0 + β1X1 + β2X2 + ⋯βmXm

P(Y = 1 | x = (x1,x2, . . . ,xm))

P(Y = 1 | x = (x1,x2, . . . ,xm)) =
exp(β0 + β1X1 + β2X2 + ⋯ + βmXm)

1 + exp(β0 + β1X1 + β2X2 + ⋯ + βmXm)

x = (x1,x2, . . . ,xm) P(Y = 1 | x = (x1,x2, . . . ,xm))

β0,β1, . . . ,βm

Xi

xi xi + 1

Incremental odds ratio =
exp(β0 + β1x1 + ⋯ + βi(xi + 1) + ⋯ + βmxm)

exp(β0 + β1x1 + ⋯ + βixi + ⋯ + βmxm)
= exp(βi)

Xi βi

P(Y = 1 | x = (x1,x2, . . . ,xm)) βi

P(Y = 1 | x = (x1,x2, . . . ,xm)) X

Y Y = 1 Y = 0

ln
P(Y = 1 |x)

1 − P(Y = 1 |x)
= 0.21 + 1.34x

X exp(1.34)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 9/57

In the case of a logistic regression model with many independent variables, the variable that best explains the
target variable must be selected. In order to select variables, a model selection criterion that can compare several
models is needed, and the Akaike Information Criteria (AIC) is commonly used. Specific selection methods
include forward selection, backward elimination, and stepwise methods, as in the Bayes classification variable
selection method. For more information, please refer to a related statistics book.

Example 7.2.1 Using the survey data in Example 7.1.2, find a logistic regression model with product
purchase as the target variable and age, monthly income, as independent variables.

Answer

If we perform a logistic regression analysis using R with age () and monthly income () as independent
variables and purchasing status as a target variable (), we will get the results in the following table.

Coefficients:

(Intercept) Age Income

-7.629959 0.223517 0.001918

This means that the logistic regression model is as follows.

If we rearrange the above equation using , it can be written as follows.

If a customer whose age is 20 and income is 200, , the posterior probability is as
follows.

If the critical value of the posterior probability is 0.5, then the customer is classified by group 0, which is
the non-purchasing group.

7.2.1 R practice - Logistic regression

Let us practice the logistic regression using R commands with the data saved at
C:\Rwork\PurchaseByCredit20_Continuous.csv. In order to practice the decision tree using this data, we need to
change first the working directory of R as follows.

File > Change Directory > C: > Rwork

If we read the data file in R, it looks like as follows.

read the data file

> customer <- read.csv('PurchaseByCredit20_Continuous.csv', header=T, as.is=FALSE) copy r command

X1 X2

Y

ln
P(Y = 1 | X = (X1,X2))

1 − P(Y = 1 | X = (X1,X2))
= −7.629959 + 0.223517X1 + 0.001918X2

P(Y = 1 | X = (X1,X2))

P(Y = 1 | X = (X1,X2)) =
exp(−7.629959 + 0.223517X1 + 0.001918X2)

1 + exp(−7.629959 + 0.223517X1 + 0.001918X2)

X = (20, 200) P(Y = 1 | X)

P(Y = 1 | X = (20, 200)) =
exp(−7.629959 + 0.223517 × 20 + 0.001918 × 200)

1 + exp(−7.629959 + 0.223517 × 20 + 0.001918 × 200)

=
0.062286

1 + 0.062286
= 0.058634

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 10/57

> customer

 Age Income Purchase
1 25 150 Yes
2 34 220 No
3 27 210 No
4 28 250 Yes
5 21 100 No
6 31 220 No
7 36 300 Yes
8 20 100 No
9 29 220 No
10 32 250 Yes
11 37 400 Yes
12 24 120 No
13 33 350 No
14 30 180 Yes
15 38 350 Yes
16 32 250 No
17 28 240 No
18 22 220 No
19 39 450 Yes
20 26 150 No

> attach(customer) copy r command

> Purchase

 [1] Yes No No Yes No No Yes No No Yes Yes No No Yes Yes No No No
Yes
[20] No
Levels: No Yes

copy r command

> logitmodel <- glm(Purchase ~.,family=binomial(link='logit'),data=card) copy r command

> logitmodel

Call: glm(formula = Purchase ~ ., family = binomial(link = "logit"), data =
card)
Coefficients:
(Intercept) Age Income
 -7.629959 0.223517 0.001918
Degrees of Freedom: 19 Total (i.e. Null); 17 Residual
Null Deviance: 26.92
Residual Deviance: 20.68 AIC: 26.68

copy r command

7.3 Nearest neighbor classification model
Decision tree, Bayes classification, and logistic regression models first establish an appropriate model from the

collected data and then apply it to the data to be classified. These models are called eager learners. However, the
nearest neighbor classification model establishes a model when there is data to be classified and is called a lazy
learner. In other words, the nearest neighbor classification model first stores all training data in the computer.
When the data is to be classified, it finds a set of data that are most similar to the variable values ​​of the data and
classifies the data into a group with a majority vote in that set. It is called a -nearest neighbor classification
model. The similarity between the data to be classified and the training data uses various mathematical or
statistical proximity measures studied in Chapter 3.

<Figure 7.3.1> shows two-dimensional continuous data divided into + and - groups. When the data marked
with in the Figure is to be classified, it shows the 1-nearest neighbor (innermost circle), 2-nearest neighbor
(middle circle), and 7-nearest neighbor (outer circle) data points using the two-dimensional Euclidean distance.

k

k

X

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 11/57

<Figure 7.3.1> 1-nearest, 2-nearest, 7-nearest neighbor data for given data marked with

If only 1-nearest neighbor is used for classification, there is one - group, and the data is classified as the -
group. If 2-nearest neighbors are used, there are one + group and one - group data, so it is difficult to classify the
data and it can be classified into either group. If 7-nearest neighbors are used, since there are three + groups and
four - groups, the majority rule is used to classify into the - group. As seen in these cases, the appropriate
selection of has a great influence on the classification result. If is too small, the data may be incorrectly
classified due to the noise of the data. If is too large, the data may not be classified into a group close to the data.

An algorithm for the nearest neighbor classification model can be summarized as follows.

[Algorithm for the nearest neighbor classification]

Suppose there are number of training data with variables and group variable as
. The algorithm first calculates the similarity distance between the test

data to be classified and all training data. If there is a lot of training data, the calculation of the
similarity distance may take a lot of time. After finding the adjacent neighbors using the calculated
distance, the test data is classified into a majority group of these adjacent neighbors, which can be
expressed in the following formula.

Step 1 Let be the test data, and be the training data.

Step 2 for test data do

Step 3 for i = 1 to n do

Step 4 Calculate the distance between and

Step 5 end for

Step 6 Find the training data set that is the nearest neighbor of

Step 7 Classify into the majority group of , that is

Step 8 end for

X

X

X

X

k k

k

k

n m xi yi
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

x
k Dx

x

y = argmaxv ∑
(xi,yi)∈Dx

I(v = yi)

x D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

x

d(x, xi) x xi

Dx k x

x Dx

y = argmaxv ∑(xi,yi)∈Dx
I(v = yi)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 12/57

In this algorthm, when the test data is classified into the majority group of the -nearest neighbor data ,
the distance between and neighbors was not considered. A distance-weighted classification method can be
used to compensate for this shortcoming, that has a weighting coefficient which is inversely proportional
to the distance.

Example 7.3.1 Using the survey data in Example 7.1.2, classify a customer whose age is 33 years old and has
a monthly income of 190 whether he will buy a product or not, using the 5-nearest neighbor classification
model.

Answer

Age and monthly income have different measurement units, so they must be converted to the same unit.
Here, the standardization transformation was used using the sample average of age 29.6 and its sample
standard deviation of 5.623, and the sample average of monthly income 236.5, and sample standard
deviation 95.547 as Table 7.3.1. The standardized value of the customer's data (33, 190) becomes (0.605,
-0.487), and Table 7.3.1 shows the squared Euclidean distance between the customer data and all data. 5-
nearest neighbors were colored as yellow background which included 3 of 'No's and 2 of 'Yes's. Therefore, the
customer is classified into 'No" which means he will not purchase a product.

Table 7.3.1 Standardized data of age and income, and squared Euclid distance of the customer

Number Age Income
(unit 10,000

won)

Purchase Standardized
Age

Standardized
Income

Squared Euclid
Distance of
customer

1 25 150 Yes -0.818 -0.905 2.199

2 34 220 No 0.782 -0.173 0.130

3 27 210 No -0.462 -0.277 1.182

4 28 250 Yes -0.285 0.141 1.185

5 21 100 No -1.529 -1.429 5.441

6 31 220 No 0.249 -0.173 0.225

7 36 300 Yes 1.138 0.665 1.610

8 20 100 No -1.707 -1.429 6.232

9 29 220 No -0.107 -0.173 0.605

10 32 250 Yes 0.427 0.141 0.426

11 37 400 Yes 1.316 1.711 5.337

12 24 120 No -0.996 -1.219 3.098

13 33 350 No 0.605 1.188 2.804

14 30 180 Yes 0.071 -0.591 0.296

15 38 350 Yes 1.494 1.188 3.595

16 32 250 No 0.427 0.141 0.426

17 28 240 No -0.285 0.037 1.064

18 22 220 No -1.352 -0.173 3.925

19 39 450 Yes 1.672 2.235 8.543

20 26 150 No -0.640 -0.905 1.725

Selection of on the neighbor classification

x k Dx

x xi

1
d(x,xi)2

k

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 13/57

The selection of in the nearest neighbor classification model is important for an accurate classification. The
following module of eStatU makes it possible to search for a value, which shows better accuracy, sensitivity or
specificity on the nearest neighbor classification. is selected when there is no significant increase in accuracy.
Since the number of data is small in this example, it is not easy to decide . If we select = 5, eStat shows the
classification result of all training data.

[Nearest neighbor classification]

k

k

k

k k

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 14/57

Menu K Nearest Neighbor Classification

 Variable Name Data Input
 Y Purchase Yes,No,No,Yes,No,No,Yes,No,No,Yes,Yes,No,No,Yes,Yes,No,No,No,Yes,No

 X1 Age 25,34,27,28,21,31,36,20,29,32,37,24,33,30,38,32,28,22,39,26

 X2 Income 150,220,210,250,100,220,300,100,220,250,400,120,350,180,350,250,240,220,450

 X3

 X4
 X5

 Nearest Neighbor Search K (max=n/20 or 20) Fixed K = 5

 Data standardization Distance measure (Euclid)2 Manhattan
 Data partition (Train 100 % : Test 0 %)
 Execute Scatter Plot Matrix Parallel Graph Erase Data

 Graph Save Classification Table Table Save

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 15/57

Characteristics of the neighbor classification model

The characteristics of the nearest neighbor classification model are summarized as follows.

1) The nearest neighbor classification method is based on the data to be classified, so it does not require a
special model, and only requires a measurement of the similarity between this data and the training data. If
the training data increases, it takes a lot of time and effort to calculate the similarity measure, and, if an
appropriate similarity measure is not used, the classification may not be accurate.

2) The nearest neighbor classification method classifies only using local information of the nearest neighbors of
the data to be classified, so if is small and there is much noise in the data, the classification may not be
accurate.

3) Since the decision boundary determined by the nearest neighbor classification method is not a function, it is
more flexible than the straight or rectangular classification boundary of a decision tree or other models.
However, a boundary that is too dependent on the training data may not help the stability of the classification.
The number of nearest neighbors should be increased or a distance-weighted classification method should be
considered to prevent this problem.

7.3.1 R practice - Nearest neighbor classification

To use k-nearest neighbor (KNN) classification using R, we need to install a package called DMwR2. From
the main menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear.
Here, select ‘0-Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘DMwR2’
and click ‘OK’. General usage and key arguments of the function are described in the following table.

k-nearest neighbor classification model.
This function provides a formula interface to the existing knn() function of package class. On top of this type
of convinient interface, the function also allows standardization of the given data.

kNN(form, train, test, stand = TRUE, stand.stats = NULL, ...)

form An object of the class formula describing the functional form of the classification model.

train The data to be used as training set.

k

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 16/57

test The data set for which we want to obtain the k-NN classification, i.e. the test set.

stand A boolean indicating whether the training data should be previously normalized before obtaining the
k-NN predictions (defaults to TRUE).

stand.stats This argument allows the user to supply the centrality and spread statistics that will drive the
standardization. If not supplied they will default to the statistics used in the function scale(). If
supplied they should be a list with two components, each beig a vector with as many positions as
there are columns in the data set. The first vector should contain the centrality statistics for each
column, while the second vector should contain the spread statistc values.

An example of R commands for a k-neares neighbor classification with customer data as both training and
testing when k= 5 is as follows.

> install.packages('DMwR2') copy r command

> library(DMwR2) copy r command

> customer <- read.csv('PurchaseAgeIncome_Continuous.csv', header=T, as.is=FALSE) copy r command

> attach(customer) copy r command

> Purchase

[1] Yes No No Yes No No Yes No No Yes Yes No No Yes Yes No No No Y
es
[20] No
Levels: No Yes

copy r command

> nn <- kNN(Purchase ~ ., customer, customer, k=5) copy r command

> nn

 [1] No No No No No No Yes No No No Yes No Yes No Yes No No No
Yes No
Levels: No Yes

copy r command

To make a classification cross table, we can use a vector of Purchase and nn which is the predicted class with
table command as below. Using this classification table, accuracy of the model is calculated as 0.75 which is
(11+4) / (11+1+4+4).

> classtable <- table(Purchase, nn)

Purchase No Yes
 No 10 2
 Yes 4 4

copy r command

> sum(diag(classtable)) / sum(classtable)

[1] 0.75

copy r command

7.4 Artificial neural network model
The artificial neural network model is a model that imitates the way the human brain makes decisions and

classifies them. It is said that the human brain is composed of a neural network in which neurons are
connected to each other. When one neuron is stimulated, this stimulation is transmitted to other neurons and the
information held by multiple neurons is synthesized to make a decision. The neural network model connects

1011

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 17/57

multiple nodes into a network similar to the human brain and makes decisions to classify data, as in <Figure
7.4.1>.

<Figure 7.4.1> Neural network model connects multiple nodes into a network

The artificial neural network model is a model that uses a generalized nonlinear function as a classification
function. The motivation for studying this model is the simple two-group (denoted as o and x) two-dimensional
data as in <Figure 7.4.2>. This data cannot be separated into two groups o and x by a single straight line (not
linearly separable), and can only be separated by two straight lines or nonlinear functions.

<Figure 7.4.2> Two-dimensional data which cannot be separated into two groups o and x by a single
straight line

There are many types of nonlinear functions for classification, so many studies have been conducted on
classification models using generalized nonlinear functions. In 1957, Rosenbalatt of Cornell Aeronautical
Laboratory in the United States used a single-layer neural network model called a perceptron for character
recognition. However, this perceptron could only solve linear problems, so it did not receive much attention. In
1969, Minsky and Papert of MIT developed a multilayer neural network model that introduced a hidden layer to
the perceptron neural network and showed that classification was possible with a generalized nonlinear function.
In 1982, Hopefield developed a back-propagation algorithm that could effectively estimate the weight
coefficients of a multilayer neural network. Since then, computer performance has improved, making it easier to
estimate weight coefficients using the back-propagation algorithm, and neural network models have been widely
used in real-world problems. In Section 7.4.1, a single-layer neural network model is introduced to understand
neural network models, and in Section 7.4.2, a multilayer neural network model is explained.

7.4.1 Single-layer neural network

To understand the artificial neural network model, Let us look at the following single-layer neural network
example.

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 18/57

Example 7.4.1 (Single-layer neural network)
Suppose is a group variable where there are two groups, denoted '+1' and '-1', and there are three binary
variables which have values either 0 or 1. If two or more of the three binary variables have the
value 1, classify them as the group ‘+1’, and if they have one or fewer 1 value, classify them as the group
‘-1’ as in Table 7.4.1. Create a single-layer neural network model that can perform such classification and
classify this data.

Table 7.4.1 Possible values of three binary variables and their group

Number

1 0 0 0 -1

2 0 0 1 -1

3 0 1 0 -1

4 0 1 1 +1

5 1 0 0 -1

6 1 0 1 +1

7 1 1 0 +1

8 1 1 1 +1

Answer

If the predicted value of the group is , the above data can be classified using the following linear function
model.

For example, if , then , so = +1. If
, then , so = -1. Let us put aside the discussion of

how to create such a linear classification model for a moment and if we represent the above model as a
neural network in an easy-to-understand way, it is as in <Figure 7.4.3>. This is called a single-layer neural
network or perceptron.

<Figure 7.4.3> Single layer neural network which is a linear classification model

As you can see in the figure, there is an input node to display the value of three variables and the
output node of the model to display the value of the group variable . The nodes are also called neurons in
neural networks as the human brain. Each input node is connected to the output node with a weight
coefficient, which describes the connections between neurons in the brain. Just as neurons in the brain can
learn and make decisions, neural networks use data to train the optimal weight coefficients (in the figure,

) that connect the relationship between input nodes and output nodes. The
output node of the neural network calculates the value of the group by adding a constant to the
linear combination using the weight coefficients of each input node to calculate the value

, which is called a linear combination function. The constant is called a bias
factor. The sign function is used to investigate the sign of the calculated linear combination
function value which is called an activation function.

y
x1,x2,x3

x1,x2,x3 y

x1 x2 x3 y

ŷ

ŷ = {
+1 if 0.3x1 + 0.3x2 + 0.3x3 − 0.4 > 0

−1 if 0.3x1 + 0.3x2 + 0.3x3 − 0.4 < 0

x1 = 1, x2 = 1, x3 = 0 0.3x1 + 0.3x2 + 0.3x3 − 0.4 = 0.2 ŷ
x1 = 0, x2 = 1, x3 = 0 0.3x1 + 0.3x2 + 0.3x3 − 0.4 = −0.1 ŷ

x1, x2, x3

y

w1 = 0.3,w2 = 0.3,w3 = 0.3
ŷ w0 = −0.4

w0 + w1x1 + w2x2 + w3x3 w0

sign(x)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 19/57

In general, when there are variables and the weighting coefficients for each variable are
 and the constant term (bias) is , the classification function of a single-layer neural network

model, such as Example 7.4.1, can be expressed as a nonlinear function as follows.

Here, the linear combination (or weighted sum) of each variable is called a
combination function. The sign function, that has a value of +1 when is positive and a value of -1
when is negative, is called an activation function. The activation function is a function that converts the input
combination function value back into a certain range of values. The classification function of single-layer neural
network is a composite function of a linear combination function with the sign function.

In the example above, a weighted sum of input information was used as the combination function, but there are
other combination functions such as simple sums of input information, maximum values, minimum values, or
logical ANDs and ORs, but the weighted sum is the most commonly used. In addition to the sign function
, examples of frequently used activation functions are as in Table 7.4.2, and <Figure 7.4.4> shows shapes of these
activation functions.

Table 7.4.2 Examples of activation functions

Name Activation fuction Range

 function -1, +1

 fuction (0, 1)

 function (-1, 1)

 function (0, 1)

<Figure 7.4.4> Shapes of activation functions

m x1,x2, . . . ,xm

w1,w2, . . . ,wm w0

ŷ = sign(w0 + w1x1 + w2x2 + ⋯ + wmxm)

w0 + w1x1 + w2x2 + ⋯ + wmxm

sign(x) x

x

sign(x)

sign y = sign(x)

sigmoid y = 1
1+e−x

tanh y = ex−e−x

ex+e−x

Gauss y = e− x2

2

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 20/57

The sigmoid function, which is widely used as an activation function, converts the input value to a value between
(0,1). This function has little effect on the value of when the value of is very large or very small. When the
sigmoid function is differentiated, it has the following good property.

It means that the differentiation of the sigmoid function can be easily calculated as . Because of this
property of the sigmoid function, it is widely used in optimization problems to obtain the rate of change easily.

Learning algorithm for single layer neural network

In the classification function of the single-layer neural network model, estimating the weight coefficients,
 and the constant term is called a learning of the neural network. Let training data be

 and be the th iteration estimated values of the
weight coefficients. The weight coefficients of the single-layer neural network are estimated using an iterative
search algorithm as follows.

[Learning algorithm for the single-layer neural network]

Step 1 Let be the training data

Step 2 be the initial estimated value of the coefficients and is the learning rate

Step 3 for i = 1 to n do

Step 4 for j = 1 to m do

Step 5 Estimate using

Step 6

Step 7 end for

Step 8 end for

In step 2 of the algorithm, the initial values of the weight coefficients usually use random
numbers between 0 and 1. is called a learning rate and has a value between 0 and 1. If the learning rate is close
to 1, the estimated value changes a lot, and if it is close to 0, the estimated value changes slowly. In step 5, is
the estimated value when the group value is estimated times repeatedly. When this algorithm is repeated as
many times as the number of data (), we say that ‘the neural network has been trained’. In step 6,
the search algorithm for weight coefficients such as can be intuitively easily
understood. The th estimate for the weight coefficient of is obtained by adding a value proportional to the
current prediction error to the previous estimated weight coefficient . If the prediction is accurate,

 = 0, so the weight coefficient does not change. If the prediction is not accurate, for example, = +1,
 = -1, then the prediction error = 2, so in order to increase the estimated value, the weight coefficient

of the input node with a positive value is increased, and the weight coefficient of the input node with a negative
value is decreased. On the other hand, if = -1, = +1, then the prediction error = -2, so in order to
reduce the estimated value, the weight coefficient of the input node with a negative value is increased, and the
weight coefficient of the input node with a positive value is decreased.

y x

y = 1
1+e−x

y′ =
e−x

(1 + e−x)2

=
1

1 + e−x
(1 −

1

1 + e−x
)

= y(1 − y)

y y(1 − y)

w1,w2, . . . ,wm w0 n

D = {(xi1,xi2, . . . ,xim, yi), i = 1, 2, . . . ,n} w
(i)
1 ,w(i)

2 , . . . ,w(i)
m i

D = {(xi1,xi2, . . . ,xim, yi), i = 1, 2, . . . ,n}

w
(0)
1 ,w

(0)
2 , . . . ,w

(0)
m λ

y
(i)
i w

(i−1)
1 ,w

(i−1)
2 , . . . ,w

(i−1)
m

w
(i)
j = w

(i−1)
j + λ(yi − y

(i)
i)xij

w
(0)
1 ,w

(0)
2 , . . . ,w

(0)
m

λ

y
(i)
i

yi i

i = 1, 2, . . . ,n

w
(i)
j = w

(i−1)
j + λ(yi − y

(i)
i)xij

i w(i) xj

(yi − y
(i)
i) w

(i−1)
j

(yi − y
(i)
i) yi

y
(i)
i (yi − y

(i)
i)

yi y
(i)
i (yi − y

(i)
i)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 21/57

The above search method is an algorithm that finds weighting coefficients which minimize the sum of square
errors when the estimated value for each data group is found using the linear combination function

 and the sigmoid activation function. The sum of squared errors in a single-
layer neural network with weighting coefficients is as follows.

In order to find that minimizes the sum of squared errors, we can differentiate
partially with respect to each as follows.

Therefore, one way to search for the weight coefficient that minimizes the sum of squared errors is to move in
the direction of the partial derivatives as follows.

In the case of the linear combination function and sigmoid activation function, the algorithm for searching weight
coefficients can be created as follows.

For more information on the algorithm, please refer to the relevant literature, and let us examine the learning of a
single-layer neural network using the following example.

Example 7.4.2 For the single-layer neural network of Example 7.4.1, train the neural network with the
initial values ​​for the weight coefficients as = 0.2, = 0.1, = 0.1, the bias = -0.4, and the
learning rate = 0.1.

Answer

Table 7.4.3 is the application of the learning algorithm to the single-layer neural network, which calculates
the weighted linear combination and the estimation of group value

 using the given initial values.

Table 7.4.3 Application of learning algorithm to the sigle-layer neural network

iteration data linear combination function activation function modified coefficients

i

1 0 0 0 -1 -0.4 -1 0.2 0.1 0.1

2 0 0 1 -1 -0.3 -1 0.2 0.1 0.1

3 0 1 0 -1 -0.3 -1 0.2 0.1 0.1

4 0 1 1 +1 -0.2 -1 0.2 0.3 0.3

5 1 0 0 -1 -0.2 -1 0.2 0.3 0.3

6 1 0 1 +1 0.1 +1 0.2 0.3 0.3

7 1 1 0 +1 0.1 +1 0.2 0.3 0.3

8 1 1 1 +1 0.4 +1 0.2 0.3 0.3

Looking at the table, if the actual group value and the estimated value are the same, there is no
change in the weight coefficient (iterations 1, 2, and 3). In iteration 4, since the error is () = 2, the
weight coefficient of the variable with = 1 and = 1 is increased by = 0.2. Since the

ŷi

w0 + w1x1 + w2x2 + ⋯ + wmxm

m + 1 w = (w0,w1,w2, . . . ,wm)

E(w) =
n

∑
i=1

(yi − ŷi)
2

w = (w0,w1,w2, . . . ,wm) E(w)

wj

∂E(w)

∂wj

= −2
n

∑
i=1

(yi − ŷi)
∂ŷi
∂wj

wj

wj ← wj − λ
∂E(w)

∂wj

wj ← wj − λ (yi − ŷi)xij

w
(0)
1 w

(0)
2 w

(0)
3 w0

λ

w(i) = w0 + w
(i−1)
1 x1 + w

(i−1)
2 x2 + w

(i−1)
3 x3

ŷi = sign(w(i))

xi1 xi2 xi3 yi w(i) = w0 + w
(i−1)
1 x1 + w

(i−1)
2 x2 + w

(i−1)
3 x3 ŷi = sign(w(i)) w

(i)
1 w

(i)
2 w

(i)
3

yi ŷi
y4 − ŷ4

x2 x3 λ × (y4 − ŷ4) × x4j

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 22/57

other data have the same group value and predicted value, there is no change in the weight coefficient, so
the estimated final weight coefficient is = 0.2, = 0.3, = 0.3. That is, the final neural network
model is . If this estimation formula is applied to all data, the groups
are accurately classified.

It should be noted that the estimation algorithm for the weight coefficients of a single-layer neural network
can have different solutions depending on the initial value and learning rate. For example, if the initial
values are the same and the learning rate is = 0.05, the final weight coefficients are = 0.2, = 0.25,

 = 0.25, and this solution also correctly classifies all data.

7.4.2 Multilayer neural network

The single-layer neural network model classifies data between two groups as a linear classification function.
However, it is not suitable when the data cannot be classified as a linear function, as in <Figure 7.4.2>. In this
case, a multilayer neural network model which classifies data using a nonlinear function is useful. <Figure
7.4.5> is an example of Example 7.4.1 expressed as a multilayer neural network. As shown in the figure, a
multilayer neural network consists of an input layer consisting of input nodes, a hidden layer that is a set of
intermediate nodes that synthesize the nodes of the input layer, and an output layer that synthesizes the nodes of
the hidden layer. A neural network like <Figure 7.4.5> has only one hidden layer, but can create multiple hidden
layers, and each layer can have multiple nodes, so various types of networks can appear.

<Figure 7.4.5> Example of multilayer neural network

The neural network in <Figure 7.4.5> can be expressed as a formula as follows. Let the weight coefficients
from the input node ① to the hidden nodes ④ and ⑤ be and , let the weight coefficients from the input
node ② to the hidden nodes ④ and ⑤ be and , and let the weight coefficients from the input node ③ to
the hidden nodes ④ and ⑤ be and . In the same way, let the weight coefficient from the hidden node ④ to
the output node ⑥ be , and let the weight coefficient from the hidden node ⑤ to the output node ⑥ be .
And if the bias constants of nodes ④, ⑤, and ⑥ are and the activation function is , then
the output values and calculated from hidden nodes ④ and ⑤ are as follows.

The value of the output node ⑥ , i.e., the estimated value of , is the value of the activation function for linear
combination of and as follows.

If we combine the above equations, the estimated value of becomes the following complex nonlinear function.

w1 w2 w3
ŷ = sign(−0.4 + 0.2x1 + 0.3x2 + 0.3x3)

λ w1 w2
w3

w14 w15

w24 w25

w34 w35

w46 w56

w04,w05,w06 f4, f5, f6

O4 O5

O4 = f4(w04 + w14x1 + w24x2 + w34x3)
O5 = f5(w05 + w15x1 + w25x2 + w35x3)

y

O4 O5

ŷ = f6(w06 + w46O4 + w56O6)

y

ŷ = f6(w06 + w46f4(w04 + w14x1 + w24x2 + w34x3) + w56f5(w05 + w15x1 + w25x2 + w35x3))

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 23/57

In the above example, if there are multiple hidden layers, more hidden nodes, and multiple output nodes, the
nonlinear function that represents the final output becomes more complex. Therefore, the design of a multilayer
neural network should always consider the following:

 - How many hidden layers should there be?
 - How many nodes should each hidden layer have?
 - Is there a nonlinear function represented by these hidden layers and hidden nodes?

Let us assume that values of all variables, , can be converted to values ​​between [0,1].
The following theorem shows the existence of a nonlinear function represented by the multilayer neural network.

Theorem 7.4.1 Approximation of a continuous function (Kolmogorov)
When a continuous function is defined on , this function can be expressed as follows.

Here, and are appropriately chosen functions.

This theorem can be interpreted as a neural network as follows. For the input nodes of variables ,
 hidden nodes receive the sum of nonlinear functions . Each hidden node receiving this value

outputs a nonlinear function , and the final output node calculates the sum of these. In other words, assuming
that there is a nonlinear function , this function can be approximated by a composite function of
combination functions and activation functions, such as equation in the Theorem 7.4.1. A neural network model
consisting of this complex approximation function is often called a black box. It is not known exactly how many
hidden nodes can approximate the function well.

Design of multilayer neural network model

The neural network model is experimented with various combinations of the number of hidden layers and the
number of nodes through trial and error, and the general design method is as follows.

1) Data preparation
In the case of continuous variables, units of variables may be different, so the variable values are usually converted
to be between 0 and 1. A simple conversion method is to subtract the minimum value from the actual data value
and then divide it by the possible range of the variable (maximum value - minimum value). For ordinal variables,
the smallest ordinal value is set to 0, the larger ordinal value is set to 1, and the ordinal values ​​in between are
converted proportionally. In the case of categorical variables, each category value is usually treated as one
variable, and a binomial value of 0 or 1 is used depending on the presence or absence of the category value. It is
desirable to have a certain number of data for each category value, but if the number of data is small, it is
sometimes combined with adjacent category values. Missing values ​​are either removed or replaced by estimating a
value appropriate for the data.

2) Number of input nodes
If the variable is binomial or continuous data, assign one input node to each variable. If the variable is categorical,
assign one input node to each categorical value.

3) Number of output nodes
If there are two groups, one output node is sufficient. If there are groups, assign output nodes.

x = (x1,x2, . . . ,xm)

f(x) [0, 1]m

f(x) =
2m+1

∑
k=1

Θk [
m

∑
j=1

ϕjk(xj)]

Θk ϕjk

x1,x2, . . . ,xm

(2m + 1) ϕjk(xj)

Θk

y = f(x)

y = f(x)

K K

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 24/57

4) Number of hidden layers and number of hidden nodes
Determining the number of hidden layers and number of hidden nodes is a problem of determining the nonlinear
function of the neural network model. If the number of hidden layers and hidden nodes increases, the model may
be overfitted, so if possible, it is good to have a model that can classify satisfactorily with a small number of
hidden layers and hidden nodes. However, there is no exact method to find the optimal number of hidden layers
and hidden nodes. Usually, after setting the number of hidden layers and hidden nodes sufficiently, we reduce
them one by one and select a model with high accuracy and a small number of hidden layers and hidden nodes. At
this time, model selection criteria such as AIC (Akaike information criteria) can be used.
If possible, it is good to obtain the classification function by setting the number of hidden layers to 1. However, if
too many nodes are created in one hidden layer, the number of hidden layers is set to two, and the number of nodes
in each layer is reduced. It is usually done so that the number of nodes in each layer does not exceed twice the
number of nodes in the input layer. Experiments to determine the number of hidden layers and nodes take the most
time in artificial neural network models.

5) Selection of activation function
Among the activation functions in Table 7.4.2, the sigmoid function, which is useful for the estimation algorithm
of weight coefficients, is often used. The activation function is known to affect the algorithm speed during the
training process of a neural network but does not have a significant effect on the results.

6) Initial value problem
Algorithms that estimate the weight coefficients of a multilayer neural network model require initial values, and
most of them randomly generate values ​​between -1 and 1. Since there is a possibility that a given initial value will
find a local solution, it is necessary to experiment several times to find the same weight coefficients by trying
various initial values.

7) Interpretation of output variables
If there are two groups and one output node, the output value is a continuous value, so it can be classified based on
an appropriate boundary value. If there are multiple groups, the number of output nodes is usually the same as the
number of groups, and the group is classified based on the value of the output node that is large (or small).

8) Sensitivity analysis
After obtaining the solution of the neural network using training data, it is a good idea to conduct sensitivity
analysis to determine the relative importance of the input variables. Change the value of the input variable from
the minimum to the maximum and examine the change in the output value.

Learning algorithm of multilayer neural networks

The process of estimating the weight coefficients of a multilayer neural network model is called learning of the
neural network. Since a multilayer neural network is a complex nonlinear function model, estimating the weight
coefficients is not easy. The learning algorithm for a single-layer neural network is not suitable for a multilayer
neural network with a nonlinear function that has many weight coefficients. The estimation of the weight
coefficients in a multilayer neural network uses the gradient descent method.

Let the input node values ​​of a multilayer neural network with input variables be . Let
the weight coefficient connecting node to node in the neural network be , the constant coefficient at this
time be , and let all the weight coefficients appearing in this neural network be . The output of the neural
network can be expressed as , where the function is a composite function of several combination
functions and activation functions as in Theorem 7.4.1. In order to find the weight coefficient of the multilayer
neural network, it is reasonable to minimize the distance between the observed group value of all data
and the estimated value of the neural network. If we use the Euclidean square distance, we find the weight
coefficient that minimizes the error sum of squares as follows.

m x = (x1,x2, . . . ,xm)

j k wjk

w0k w

ŷ = f(x : w) f

w

d(yi, ŷi) yi

ŷi

E(w)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 25/57

To find that minimizes the error sum of squares, we differentiate with respect to each as follows.

If is estimated using the sigmoid activation function, the rate of change of the estimated value, , is
proportional to due to the differentiation characteristic of the sigmoid function. Therefore, we can
create an algorithm to search for weight coefficients as follows.

Here, is the learning rate, which has a value between 0 and 1. means the gradient descent rate, which

implies that the estimation of weight coefficients should be adjusted in the direction that decreases the total error
sum of squares. If the output value of input node is and the error at output node is , the above update of
weight coefficients is as follows.

Here, is the change amount of the weight coefficient, which is the same concept as the estimation of the
weight coefficient of the single-layer neural network. That is, the weight coefficient is updated as a learning rate
proportional to the input from node by considering the error of node . In a similar way, the bias constant

 is updated as follows.

In this algorithm, the estimation of and is not easy when applied to the hidden nodes in the multilayer
neural network model, so the back-propagation algorithm developed by Hopefield is used. The back-
propagation algorithm sets a criterion for optimizing the initial weight coefficients and the objective function, and
divides it into the forward step and the backward step to repeatedly update the weight coefficients. In the forward
step, the estimated weight coefficients are used to calculate the output values ​​of all nodes, and the output values ​​of
the nodes in the layer are used to calculate the output values ​​of the nodes in the layer . In the backward step,
the output values and error values ​​for the nodes in the calculated layer are used to estimate the error values ​​
for the nodes in the layer and the weight coefficients are updated. This method is repeatedly applied until the
weight coefficients hardly change or the objective function value is optimized, and the algorithm is stopped.

When the sigmoid activation function is used in the multilayer neural network in <Figure 7.4.5>, let us
estimate the weight coefficients by applying the back-propagation algorithm. First, the initial weight coefficients
are used to obtain the output values of each node. Here, are the values of the input
variable . The key is how to obtain the error of each node. In the back-propagation algorithm, it is
estimated by considering the weighted sum of the errors of all nodes connected to node . In the case of a sigmoid
function, the rate of change is proportional to , so the error of the output node ⑥ is estimated as
follows.

Here, denotes the rate of change , and the term denotes the estimation error
. That is, the meaning of the error is the estimation error multiplied by the error change rate

. The error of hidden node ⑤ is calculated by multiplying the error change rate by the
weighted sum of errors of all nodes connected to node ⑤, which is called the back-propagation of the error. That
is,

E(w) =
n

∑
i=1

(yi − ŷi)
2

w E(w) wjk

∂E(w)

∂wjk

= −2
n

∑
i=1

(yi − ŷi)
∂ŷi

∂wjk

ŷi
∂ŷi

∂wjk

ŷi(1 − ŷi)

wjk ← wjk − λ
∂E(w)

∂wjk

λ
∂E(w)
∂wjk

j Oj k Ek

wjk ← wjk − λ EkOj

λ EkOj

λ

Oj j Ek k

w0k

w0k ← w0k − λ Ek

Ek Oj

l l + 1

l + 1

l

O1,O2, . . . ,O6 O1,O2,O3

x1,x2,x3 Ek

k
∂ŷi

∂wjk
ŷi(1 − ŷi) E6

E6 = O6(1 − O6)(yi − O6)

O6(1 − O6) ŷi(1 − ŷi) (yi − O6)

(yi − ŷi) E6 (yi − O6)

O6(1 − O6) E5 O5(1 − O5)

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 26/57

After calculating the error of hidden node ④ in a similar way, the weight coefficients are updated. Let us look
at the back-propagation algorithm for estimating the weight coefficient of a multilayer neural network through the
following example.

Example 7.4.3 (Learning algorithm of the multilayer neural network)
For the multilayer neural network model in Figure 7.4.5, let the input data be group 1 and the variable
values ​​be () = (1, 0, 1). Let us find the weight coefficient and bias of the model equation using
the back-propagation algorithm of the gradient descent method. The same sigmoid function, f(x), is used for
all activation functions, and the initial values ​​of the weight coefficient and bias are set as follows using a
random number between (-1,1). Let the learning rate be = 0.1.

Table 7.4.4 Initial values of the weight coefficients for the multilayer neural network in Figure 7.4.5

-0.51 -0.99 0.35 -0.45 0.39 0.19 0.27 0.71 -0.75 -0.09 0.18

Answer

The forward step of the back-propagation algorithm calculates the output values ​​of all nodes using the given
initial values. In the neural network of <Figure 7.4.5>, the output values of nodes ①, ②, and ③
are the values ​​of the input variables , and the output values​​of nodes ④, ⑤, and ⑥ are as follows,
using the given initial weight coefficients.

The backward step of the back-propagation algorithm first estimates the error of node ⑥ , and then
estimates the errors of nodes ④ and ⑤. The estimation of the error of node ⑥ is as follows.

Here, the term is the rate of change from the differentiation of the sigmoid function and is the
actual group value. The meaning of the error is the estimation error, , multiplied by the error
change rate . The error of hidden node ⑤ is calculated by multiplying the error change rate

 by the error weighted sum of all nodes connected to node ⑤, which is called back-propagation
of the error. That is,

In this problem, since there is only node ⑥ connected to node ⑤, is as follows. The error of node ④
is also calculated in the same way.

Therefore, the updated weight coefficients and biases are as follows.

E5 = O5(1 − O5)∑
k

w5kEk

E4

x1,x2,x3

λ

w14 w15 w24 w25 w34 w35 w46 w56 w04 w05 w06

O1,O2,O3
x1,x2,x3

O4 = f(w14x1 + w24x2 + w34x3 + w04)
= f(−0.51 × 1 + 0.35 × 0 + 0.39 × 1 − 0.75

= f(−0.87) = 0.2953
O5 = f(w15x1 + w25x2 + w35x3 + w05)

= f(−0.99 × 1 − 0.45 × 0 + 0.19 × 1 − 0.09

= f(−0.89) = 0.2911
O6 = f(w46O4 + w56O6 + w06)

= f(0.27 × 0.2953 + 0.71 × 0.2911 + 0.18
= f(0.4664) = 0.6145

E6

E6

E6 = O6(1 − O6)(yi − O6)
= 0.6145 × (1 − 0.6145) × (1 − 0.6145) = 0.0913

O6(1 − O6) y
E6 yi − O6

O6(1 − O6) E5

O5(1 − O5)

E5 = O5(1 − O5)∑
k

w5kEk

E5 E4

E5 = O5(1 − O5)w56E6)
= 0.2911 × (1 − 0.2911) × 0.71 × 0.0913 = 0.0134

E4 = O4(1 − O4)w46E6)

= 0.2953 × (1 − 0.2953) × 0.27 × 0.0913 = 0.0051

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 27/57

In the back-propagation algorithm, it should be noted that the estimation of weight coefficients can vary
depending on the initial value and learning rate. If the learning rate is increased, the weight coefficients change
quickly, and if the learning rate is decreased, the weight coefficients change slowly. It is recommended to conduct
experiments with a high learning rate at first, and then gradually conduct experiments with a lower learning rate.
Usually, a learning rate value between 0.05 and 0.7 is often used.

When the back-propagation algorithm is repeated as many times as the number of data, it is said that the
‘neural network has learned’, but if the neural network is complex, the global optimal solution of the objective
function may not be obtained, but a local optimal solution may be obtained, so caution is required. In algorithms
that handle nonlinear functions, the final solution may be a local optimal value or a global optimal value
depending on the initial value, so experiments should be conducted repeatedly through trial and error. Usually, as
an initial value, a random number is selected from a uniform distribution in a certain area, and after an experiment,
the initial value that shows the best result is selected.

Deep learning

If there are many hidden layers in a multilayer neural network, the back-propagation algorithm often cannot
find the weight coefficients successfully because of vanishing gradients where data disappears and learning does
not proceed well. However, in 2006, Professor Geoffrey Hinton of the University of Toronto solved the vanishing
gradient problem through the pretraining of neural networks and drop-out data, and began calling the neural
network model that applied this algorithm as deep learning. This algorithm is beyond the scope of this book and
please refer related references.

Characteristics of neural network models

The characteristics of neural network models are summarized as follows.

1) In real data for classification, neural network models are evaluated to show somewhat better results than other
models. In particular, they are more useful when the number of variables is large and the input and output
variables have complex nonlinear function forms.

2) Since it is not easy to explain why the neural network model was classified that way for the classification
results, this model is sometimes called a black box. The difficulty in interpreting the model can be considered
a disadvantage of neural networks because it can be difficult to modify the model.

3) Multilayer neural networks estimate nonlinear classification functions and require at least one hidden layer.
Determining the appropriate number of hidden layers and hidden nodes is very important to avoid overfitting
the model. Neural network models show satisfactory results in training data, but in actual applications,
classification is sometimes inaccurate. This is mainly due to overfitting of the model.

4) Neural networks do not show a sensitive response even if there is noise in the training data. Therefore, it is
not easy to identify errors in input information.

5) The gradient descent method used to estimate the weight coefficients of neural networks can find local
solutions. Therefore, it is necessary to investigate whether it is a local solution or not by various methods
such as changing the initial value or analyzing the sensitivity of the data.

w46 ← w46 + λE6O4 = 0.27 + 0.1 × 0.0913 × 0.2953 = 0.2727
w56 ← w56 + λE6O5 = 0.71 + 0.1 × 0.0913 × 0.2911 = 0.7127
w14 ← w14 + λE4x1 = −0.51 + 0.1 × 0.0051 × 1 = −0.5095

w15 ← w15 + λE5x1 = −0.99 + 0.1 × 0.0134 × 1 = −0.9887
w24 ← w24 + λE4x2 = +0.35 + 0.1 × 0.0051 × 0 = 0.3500
w25 ← w25 + λE5x2 = −0.99 + 0.1 × 0.0134 × 0 = −0.4500

w34 ← w34 + λE4x3 = +0.39 + 0.1 × 0.0051 × 1 = 0.3905
w35 ← w35 + λE5x3 = +0.19 + 0.1 × 0.0134 × 1 = 0.1913
w04 ← w04 + λE4 = −0.75 + 0.1 × 0.0051 = −0.7495

w05 ← w06 + λE5 = −0.09 + 0.1 × 0.0134 = −0.0887
w06 ← w06 + λE6 = +0.18 + 0.1 × 0.0913 = 0.1891

λ

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 28/57

6) The training process of a neural network is a very time-consuming task when the number of hidden layers and
nodes is large. However, after training, test data can be classified quickly.

7.4.3 R practice - Neural network

To use the neural network model using R, we need to install a package called nnet. From the main menu of R,
select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear. Here, select ‘0-Cloud
[https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘nnet’ and click ‘OK’. 'nnet' is a
package for modeling of the neural network classification model. General usage and key arguments of the function
are described in the following table.

nnet {nnet} Fit Neural Networks
Fit single-hidden-layer neural network, possibly with skip-layer connections.

S3 method for class 'formula'
nnet(formula, data, weights, ..., subset, na.action, contrasts = NULL)
Default S3 method:
nnet(x, y, weights, size, Wts, mask, linout = FALSE, entropy = FALSE, softmax = FALSE, censored = FALSE,
skip = FALSE, rang = 0.7, decay = 0, maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000, abstol =
1.0e-4, reltol = 1.0e-8, ...)

formula A formula of the form class ~ x1 + x2 + ...

x matrix or data frame of x values for examples.

y matrix or data frame of target values for examples.

weights (case) weights for each example – if missing defaults to 1.

size number of units in the hidden layer. Can be zero if there are skip-layer units.

data Data frame from which variables specified in formula are preferentially to be taken.

subset An index vector specifying the cases to be used in the training sample.

na.action A function to specify the action to be taken if NAs are found. The default action is for the
procedure to fail. An alternative is na.omit, which leads to rejection of cases with missing values
on any required variable.

contrasts a list of contrasts to be used for some or all of the factors appearing as variables in the model
formula.

Wts initial parameter vector. If missing chosen at random.

mask logical vector indicating which parameters should be optimized (default all).

linout switch for linear output units. Default logistic output units.

entropy switch for entropy (= maximum conditional likelihood) fitting. Default by least-squares.

softmax switch for softmax (log-linear model) and maximum conditional likelihood fitting. linout, entropy,
softmax and censored are mutually exclusive.

censored A variant on softmax, in which non-zero targets mean possible classes. Thus for softmax a row of
(0, 1, 1) means one example each of classes 2 and 3, but for censored it means one example
whose class is only known to be 2 or 3.

skip switch to add skip-layer connections from input to output.

rang Initial random weights on [-rang, rang]. Value about 0.5 unless the inputs are large, in which case
it should be chosen so that rang * max(|x|) is about 1.

decay parameter for weight decay. Default 0.

maxit maximum number of iterations. Default 100.

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 29/57

Hess If true, the Hessian of the measure of fit at the best set of weights found is returned as
component Hessian.

trace switch for tracing optimization. Default TRUE.

MaxNWts The maximum allowable number of weights. There is no intrinsic limit in the code, but increasing
MaxNWts will probably allow fits that are very slow and time-consuming.

abstol Stop if the fit criterion falls below abstol, indicating an essentially perfect fit.

reltol Stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1 - reltol.

An example of R commands for the single-layer neural network model using the data as in Example 7.4.2 is as
follows.

> install.packages('nnet') copy r command

> library(nnet) copy r command

> singleNNdata <- read.csv('singleNN.csv', header=T, as.is=FALSE) copy r command

> attach(signleNNdata) copy r command

> singleNNdata

 x1 x2 x3 y
1 0 0 0 -1
2 0 0 1 -1
3 0 1 0 -1
4 0 1 1 1
5 1 0 0 -1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 1

copy r command

create a training data using the 8 data.
> train <- singleNNdata[1:8,]

copy r command

create a testing data using the same 8 data
> test <- singleNNdata[1:8,]

copy r command

> train.nnet <- nnet(y~x1+x2+x3,data=train, size=2, rang=0.1, decay=5e-4, maxit=100)

weights: 11
initial value 10.068006
iter 10 value 7.626637
iter 20 value 4.217955
iter 30 value 4.133499
iter 40 value 4.129743
iter 50 value 4.129625
iter 60 value 4.129609
iter 70 value 4.129607
iter 80 value 4.129601
final value 4.129595
converged

copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 30/57

> summary(train.nnet)

a 3-2-1 network with 11 weights
options were - decay=5e-04
 b->h1 i1->h1 i2->h1 i3->h1
 4.14 -3.06 -3.06 -3.06
 b->h2 i1->h2 i2->h2 i3->h2
 4.05 -3.01 -3.01 -3.01
 b->o h1->o h2->o
 4.63 -7.37 -7.17

copy r command

In the summary, 3-2-1 network implies that there are 3 input layers (i1, i2, i3) - 2 hidden layers (h1, h2) - 1 output
layer (o). There are 11 weights and b->h1 implies the bias constant to the hidden layer h1 which is 4.14. i1->h1
implies the weight coefficient from input layer i1 to the hidden layer h1 which is -3.06 etc. Therefore, the linear
combination function to h1 is 4.14 - 3.06 × i1 - 3.06 × i2 - 3.06 × i3, the linear combination function to h2 is 4.05 -
3.01 × i1 - 3.01 × i2 - 3.01 × i3, and the linear combination function to o is 4.63 - 7.37 × h1 - 7.17 × h2.
The R command to classify the groups by testing all 8 data using the above model is as follows. First, if we
classify the test data using the predict command with default activation function, the result will be a number.

> predict(train.nnet,test)

 [,1]
1 0.0000619568
2 0.0020718984
3 0.0020859221
4 0.9453979298
5 0.0020719570
6 0.9452023418
7 0.9453977511
8 0.9893836166

copy r command

If we observe this and classify the data using 0.1 as the reference value, all data will be classified accurately.

> nnetpred <- (predict(train.nnet,test) >= 0.01) copy r command

> table(nnetpred,y)

 y
nnetpred -1 1
 FALSE 4 0
 TRUE 0 4

copy r command

7.5 Support vector machine model
Support vector machine (SVM) model determines a classification function, called a support vector, using

training data. The SVM model has recently attracted attention and has been applied in many fields. The SVM
model is divided into the linear SVM that uses a linear classification function and the nonlinear SVM that uses a
nonlinear classification function.

7.5.1 Linear support vector machine

Consider the two-dimensional training data for two groups, indicated as '+' and '-' group, as in <Figure 7.5.1>.
In this data, the two groups can be classified well without misclassification using a single straight line, but there
are too many possible straight lines that can accurately classify two groups. Therefore, we need to consider which
straight line can lead to less misclassification of the test data. Let us compare the two straight lines and inL1 L2

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 31/57

the figure. is a straight line that bisects the point on the far right of the '+' group and the point on the far left of
the '-' group on the -axis, and the distance between the straight lines passing through the two points is . is a
straight line that bisects the point on the far right of the '+' group and the point on the far left of the '-' group, and
the distance between the straight lines passing through the two points is . If these two straight lines are used to
classify the test data, the distance (margin) is larger than the distance , so has less possibility of
misclassification in actual classification. Linear SVM is a method to determine a linear classification function so
that the distance, such as , is maximized.

<Figure 7.5.1> Comparison of two lines for classification
The distance of is larger than of , so has less possibility of misclassification.

Linear SVM can be explained by dividing the data of two groups into cases where they can be linearly
separable using a linear classification function as shown in <Figure 7.5.1> and cases where they cannot be linearly
separable.

A. Linearly separable case

Suppose that there are two groups denoted ‘+1’ and ‘-1’ groups, independent variables
 and a targent (group) variable . The training data observed for these variables are

denoted as using vector notation, where and the target
variable can have a value of +1 or -1. The linear classification equation for variables is expressed as follows.

This is a general hyperplane equation in -dimensional space, and are the parameters to be
estimated. Using a vector notation and an inner product notation, , of vectors, the above
equation can be expressed as follows.

If the data is on this hyperplane, then . If the data is above the hyperplane, then
, and if it is below the hyperplane, then . If the value of is adjusted

appropriately, the classification formula that distinguishes the two groups can be written as follows.

L1

x d1 L2

d2

d1 d2 L1

d1

d1 L1 d2 L2 L1

m

x = (x1,x2, . . . ,xm) y n

D = {(xi, yi), i = 1, 2, . . . ,n} xi = (xi1,xi2, . . . ,xim)

yi m

w0 + w1x1 + w2x2 + ⋯ + wmxm = 0

m w0,w1,w2, . . . ,wm

w = (w1,w2, . . . ,wm) ⋅

w ⋅ x + w0 = 0

xi w ⋅ xi + w0 = 0 xi

w ⋅ xi + w0 > 0 w ⋅ xi + w0 < 0 w0

if w ⋅ x + w0 ≥ 1, classify x into y = 1

if w ⋅ x + w0 ≤ −1, classify x into y = −1

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 32/57

Here, is a hyperplane passing through the points on the boundary of the group , and
 is a hyperplane passing through the points on the boundary of the group . These two

hyperplanes are called support vectors, and the distance between the two groups is the distance between these
two hyperplanes. The classification equation above, which applies to data, can be expressed as follows.

As shown in <Figure 7.5.2>, there can be multiple hyperplanes that can classify the two groups in data and the one
that has the largest distance of margin between the data on the boundaries of the two groups on the hyperplane can
minimize misclassification error.

<Figure 7.5.2> A hyperplane that can classify two groups in data.
The hyperplane that maximizes the distance (margin) is likely to have less misclassification in actual
classification.

If lies in the hyperplane , then , and if lies in the hyperplane
, then . Therefore, we have the followings.

If we denote lengths of vectors and are and respectively, and the angle between
two vectors is , the inner product of the two vectors is defined as follows.

Since the vector is perpendicular to two hyperplanes and the vector connects two points and ,
the shortest distance between two hyperplanes occurs when the two vectors are parallel, that is

 (). In case of the shortest distance, the above equation becomes as follows.

We want find a hyperplane which maximizes this distance , which is equivalent to maximizing

 or minimizing . Therefore, finding the support vector when the data of the two groups can be

completely separated using the hyperplane is equivalent to finding the solution to the following nonlinear
optimization problem.

w ⋅ xi + w0 = 1 y = +1

w ⋅ xi + w0 = −1 y = −1

d

yi (w ⋅ xi + w0) ≥ 1, i = 1, 2, . . . ,n

d

x1 w ⋅ xi + w0 = 1 w ⋅ x1 + w0 = 1 x2

w ⋅ xi + w0 = −1 w ⋅ x2 + w0 = −1

w ⋅ (x1 − x2) = 2
w (x1 − x2) ||w|| ||x1 − x2||

θ

w ⋅ (x1 − x2) = ||w|| ||x1 − x2|| cos θ

w (x1 − x2) x1 x2

d = ||x1 − x2||

θ = 0 cos θ = 1

||w|| × d = 2, that is d =
2

||w||

d = 2
||w||

d2 = 22

||w||2

||w||2

22

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 33/57

It is a quadratic optimization problem where the objective function is a quadratic function and the constraints are
linear functions. This optimization problem can be solved by the standard Lagrangian multiplier method, and the
objective function is as follows.

Here, is called the Lagrange multiplier. In order to find the value that minimizes the objective function, we must
set the partial derivatives for each unknown parameter to 0 and then solve the system of linear equations.

The detailed solution of this nonlinear system of equations is beyond the level of this book, so please refer to a
book on quadratic programming. When the optimal solutions and are obtained, the classification equation
using linear support vectors is as follows.

Let us look at the following example of the linear support vector.

Example 7.5.1
When there are eight data for two variables (age), (monthly income) and group variable (+1:
purchase, -1: non-purchase) as in Table 7.5.1, find the classification equation using a linear support vector
model.

Table 7.5.1 Eight data with two variables and their group

number
Age Income Group

1 25 150 -1

2 34 220 +1

3 26 210 -1

4 28 250 +1

5 21 100 -1

6 31 220 +1

7 36 300 +1

8 20 100 -1

Answer

If we draw a scatter plot for the data in Table 7.5.1, it is a case where linear separation is possible as in
<Figure 7.5.3>. In the figure, o means + group and r means - group, and we can see that there are many
straight lines that can classify the two groups.

Find w,w0 which minimizes
||w||2

22

subject to

yi (w ⋅ xi + w0) ≥ 1, i = 1, 2, . . . ,n

f(w,w0) =
||w||2

22
−

n

∑
i=1

λi [yi (w ⋅ xi + w0) − 1]

λi

∂f

∂w
= 0 ⇒ 2w =

n

∑
i=1

λi yixi

∂f

∂w0
= 0 ⇒

n

∑
i=1

λi yi = 0

w∗ w∗
0

If w∗ ⋅ x + w∗
0 ≥ 0, classify x into ′ + 1′ group, else ′ − 1′group.

x1 x2 y

x1 x2 y

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 34/57

<Figure 7.5.3> Linearly separable data.

If we find the solution to the quadratic programming of the linear support vector, the classification function
is 0.333 + 0.033 - 16.667 = 0 which is the line in <Figure 7.5.3> Therefore, the decision rule is as
follows.

B. Linearly not separable case

<Figure 7.5.4> shows a case where separating the two groups by a straight line is impossible. In this case, we
can create a similar optimization problem by introducing a slack variable to the classification equation for the case
where linear separation is possible. That is, by subtracting the slack variable which is positive from the right side
of the ≥ inequality in the classification equation, adding the slack variable from the right side of the ≤ inequality,
and then finding the hyperplane that minimizes the slack variable. The classification equation minimizes
misclassification.

<Figure 7.5.4> Linearly not separable data and a slack variable.

x1 x2

If 0.333x1 + 0.033x2 − 16.667 ≥ 0, classify ′ + 1′ group, else ′ − 1′group.

ξ

ξ

if w ⋅ x + w0 ≥ 1 − ξ, y = 1

if w ⋅ x + w0 ≤ −1 + ξ, y = −1

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 35/57

In <Figure 7.5.4>, the slack variable means that the hyperplane () where linear
classification is possible has moved parallel to the hyperplane that can include the data
of the - group, which is indicated by a circle. The distance between these two hyperplanes can be shown to be
, and the nonlinear optimization problem to minimize misclassification in the case of linearly non-separable is as
follows.

Here, the function is a penalty function that minimizes the slack variable, which means an error, and
and can be selected arbitrarily by the user. This nonlinear optimization problem can also be solved by the
Lagrangian multiplier method, but the details are beyond the level of this book, so we will omit them.

In this section, we introduce the SVM model for the case of two groups, but it can be extended to the case of
multiple groups.

7.5.2 Nonlinear support vector machine

In the previous section, we studied the method of separating two groups using a linear function, and if we
extend this concept, we can easily understand the nonlinear SVM model. The basic idea is to nonlinearly transform
the coordinate space of data into a new space . At this time, the classification function can take various
forms such as a circle, an ellipse, or a curve. The general optimization model of nonlinear SVM is as follows. M

This nonlinear optimization problem can also be solved using the Lagrangian multiplier method, but the details are
beyond the level of this book, so we will omit them.

Characteristics of the support vector machine model

The SVM model is a model that has been widely used recently and has the following characteristics.

1) The optimization problem for solving the linear SVM model is a minimization problem of a convex function,
and the algorithm for finding the global minimum is well-developed.

2) In cases where linear separation is impossible, the SVM model may have the disadvantage of requiring the
user to determine the penalty function.

7.5.3 R practice - Support vector machine

To use the suport vector machine model using R, we need to install a package called e1071. From the main
menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear. Here, select
‘0-Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘e1071’ and click
‘OK’. 'e1071' is a package for modeling of the support vector machine classification model. General usage and key
arguments of the function are described in the following table.

svm {e1071} Fit support vector machine

ξ w ⋅ x + w0 = −1

w ⋅ x + w0 = −1 + ξ
ξ

||w||

Find w,w0, ξi which minimize
||w||2

22
+ C(

n

∑
i=1

ξi)k

subject to

yi (w ⋅ xi + w0) ≥ 1 − ξi, i = 1, 2, . . . ,n

C(x) C(x)

k

x Φ(x)

Find w which minimize
||w||2

22

subject to

yi (w ⋅ Φ(xi)) ≥ 1, i = 1, 2, . . . ,n

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 36/57

S3 method for formula,
svm(formula, data = NULL, ..., subset, na.action =na.omit, scale = TRUE) # S3 method for default svm(x, y =
NULL, scale = TRUE, type = NULL, kernel = "radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5, class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE, ..., subset, na.action = na.omit)

formula A formula of the form class ~ x1 + x2 + ...

data an optional data frame containing the variables in the model. By default the variables are taken
from the environment which ‘svm’ is called from.

x a data matrix, a vector, or a sparse matrix (object of class Matrix provided by the Matrix package,
or of class matrix.csr provided by the SparseM package, or of class simple_triplet_matrix provided
by the slam package).

y a response vector with one label for each row/component of x. Can be either a factor (for
classification tasks) or a numeric vector (for regression).

scale A logical vector indicating the variables to be scaled. If scale is of length 1, the value is recycled
as many times as needed. Per default, data are scaled internally (both x and y variables) to zero
mean and unit variance. The center and scale values are returned and used for later predictions.

type svm can be used as a classification machine, as a regression machine, or for novelty detection.
Depending of whether y is a factor or not, the default setting for type is C-classification or eps-
regression, respectively, but may be overwritten by setting an explicit value.
Valid options are:
C-classification
nu-classification
one-classification (for novelty detection)
eps-regression
nu-regression

kernel the kernel used in training and predicting. We might consider changing some of the following
parameters, depending on the kernel type. linear: polynomial: radial basis: sigmoid:

degree parameter needed for kernel of type polynomial (default: 3)

gamma parameter needed for all kernels except linear (default: 1/(data dimension))

coef0 parameter needed for kernels of type polynomial and sigmoid (default: 0)

cost cost of constraints violation (default: 1)---it is the ‘C’-constant of the regularization term in the
Lagrange formulation

nu parameter needed for nu-classification, nu-regression, and one-classification

class.weights a named vector of weights for the different classes, used for asymmetric class sizes. Not all factor
levels have to be supplied (default weight: 1). All components have to be named. Specifying
"inverse" will choose the weights inversely proportional to the class distribution.

cachesize cache memory in MB (default 40)

tolerance tolerance of termination criterion (default: 0.001)

epsilon epsilon in the insensitive-loss function (default: 0.1)

shrinking option whether to use the shrinking-heuristics (default: TRUE)

cross if a integer value k>0 is specified, a k-fold cross validation on the training data is performed to
assess the quality of the model: the accuracy rate for classification and the Mean Squared Error
for regression

fitted logical indicating whether the fitted values should be computed and included in the model or not
(default: TRUE)

probability logical indicating whether the model should allow for probability predictions.

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 37/57

subset An index vector specifying the cases to be used in the training sample. (NOTE: If given, this
argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action is na.omit, which
leads to rejection of cases with missing values on any required variable. An alternative is na.fail,
which causes an error if NA cases are found. (NOTE: If given, this argument must be named.)

An example of R commands for the single-layer neural network model using the data as in Example 7.4.2 is as
follows.

> install.packages('e1071') copy r command

> library(e1071) copy r command

> svmdata <- read.csv('svmdata.csv', header=T, as.is=FALSE) copy r command

> attach(svmdata) copy r command

> svmdata

 x1 x2 y
1 25 150 -1
2 34 220 1
3 26 210 -1
4 28 250 1
5 21 100 -1
6 31 220 1
7 36 300 1
8 20 100 -1

copy r command

create a training data using the 8 data.
> train <- svmdata[1:8,]

copy r command

create a testing data using the same 8 data
> test <- svmdata[1:8,]

copy r command

> train.svm = svm(y~x1+x2,type="C-classification", data=train) copy r command

> train.svm

Call:
svm(formula = y ~ x1 + x2, data = train, type = "C-classification")
Parameters:
 SVM-Type: C-classification
 SVM-Kernel: radial
 cost: 1
Number of Support Vectors: 6

copy r command

The R command to reclassify the entire 8 data into groups using the above model is as follows. Classifying the
test data shows that all data are classified correctly.

> svmpred = predict(train.svm,test)
> svmpred

 1 2 3 4 5 6 7 8
-1 1 -1 1 -1 1 1 -1
Levels: -1 1

copy r command

> z = table(svmpred,y) copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 38/57

> z

 y
svmpred -1 1
 -1 4 0
 1 0 4

copy r command

The R command to draw a scatter plot of x1, x2, labeled with the values ​​of y, and a classification line 500 - 10
x1 on the scatter plot is as follows.

> plot(x1,x2,pch=y) copy r command

> abline(500,-10) copy r command

7.6 Ensemble model
The classification models studied so far have used a single classification function to predict the group of data

whose affiliation is unknown. This section introduces an ensemble model that combines the results of multiple
classification models to increase classification accuracy. Let us call a classification model established using
training data a classifier. The ensemble model is a method that creates multiple classifiers from the training data,
applies each classifier to classify the group when classifying data whose group affiliation is unknown, and then
determines the final group by a majority vote of the resulting groups.

The ensemble model can obtain better classification results than a single classifier. For example, suppose five
classifiers classify two groups, and each has a misclassification rate of 5%. If the five classifiers are independent
models, the ensemble model will misclassify if more than half of the classifiers are misclassified. In other words,
the misclassification rate of the ensemble model is as follows.

Therefore, the misclassification rate of the ensemble model is smaller than that of each classifier. For the ensemble
model to have better classification results than each classifier, each classifier must be independent, and the
misclassification rate must be at least less than 50%. In practice, it is often difficult to say that each classifier is
completely independent, but even in such cases, the classification results of the ensemble model are known to be
good.

Each classifier used in the ensemble model can be any classification model. However, while applying one
model, we can create multiple classifiers by adjusting the data, adjusting the number of variables, or adjusting the
group name.

A. Adjust the number of data

eensemble

eensemble =
5

∑
i=3

5Ci (0.05)i(1 − 0.05)5−i = 0.0001

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 39/57

This method creates multiple training data sets from the data using an appropriate sampling method, and one
classifier from each data set is created. A bagging method described in Section 7.6.1 and a boosting method
described in Section 7.6.2 are representative methods for adjusting data and ensembling them.

B. Control the number of variables

This method creates training data by selecting a subset of variables from the entire set of variables. Experts can
randomly extract or select the subset of variables. It is known to be effective when there are many unnecessary
variables, and an ensemble classification method called a random forest is introduced in Section 7.6.3.

C. Control group names

If there are many types of groups, we can classify them by grouping them into a small number of groups, or we
can apply an ensemble model by creating a classifier that only classifies whether or not they belong to each group.

D. Adjust classification model assumptions

A classification model can be divided into several different classification models by changing the assumptions
about parameters or algorithms, we can synthesize them into an ensemble model. For example, in a neural network
model, we can create different classifiers by changing the assumptions about the network shape or the initial
weight coefficients. In a decision tree model, we can create different classifiers by changing the criteria for
selecting branching variables or tree expansion criteria.

7.6.1 Bagging

Bagging is an abbreviation for bootstrap aggregating that generates a classifier for each sample using simple
random sampling with replacement repeatedly from the training data and then ensembling the results. Since the
repeated sampling with replacement is used, same data can be extracted multiple times in a sample, and some data
may not be extracted in all samples. When there are data, if samples are repeatedly extracted by simple
random sampling with replacement, the probability that each data will be extracted again is . If is
sufficiently large, this probability converges to , which is approximately 0.632. The general bagging
algorithm is as follows.

[Bagging algorithm]

Step 1 Let be the number of bootstrap samples, and be the sample size

Step 2 for k = 1 to R do

Step 3 Generate bootstrap samples of size

Step 4 Create classifier using bootstrap samples

Step 5 end for

Step 6 Classify an unknown data into the majority vote of all classifiers, that is,

Example 7.6.1 (Bagging)
A survey of 10 people who visited a store showed monthly income and purchasing status (purchasers
have a value of 1 and non-purchasers have a value of -1), as shown in Table 7.6.1. We want to use a simple
decision tree classifier such that ‘If , classify into purchaser group 1, otherwise classify into non-
purchaser group -1’. This is called a decision stump, and is determined so that the entropy is minimized
(see Section 6.2). Classify this data using the bagging method.

n n

1 − (1 − 1
n)n n

1 − 1
e

R n

Dk n

Ck Dk

x

C ∗(x) = argmaxy

R

∑
k=1

I(Ck(x) = y)

x y

x ≤ c x
c

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 40/57

Table 7.6.1 Ten customer data with income and purchase status

100 120 160 180 186 190 210 250 270 300

1 1 1 -1 -1 -1 -1 1 1 1

Answer

In the above data, the branching that minimizes entropy is = 170 or 200 (see Section 6.2). In both cases,
the classification accuracy is 70%. Table 7.6.2 shows ten bootstrap samples and their classifiers that
minimize entropy for applying the bagging method.

Table 7.6.2 Ten bootstrap samples and each classifier

number Bootstrap sample Classifier

Sample 1 100 120 120 160 180 180 186 190 270 270 If , then = 1,
else = -1

1 1 1 1 -1 -1 -1 -1 1 1

Sample 2 100 120 160 180 186 250 270 300 300 300 If , then = 1,
else = -1

1 1 1 -1 -1 1 1 1 1 1

Sample 3 100 120 160 180 180 186 210 210 250 270 If , then = 1,
else = -1

1 1 1 -1 -1 -1 -1 -1 1 1

Sample 4 100 100 120 180 180 186 186 210 250 270 If , then = 1,
else = -1

1 1 1 -1 -1 -1 -1 -1 1 1

Sample 5 100 100 120 186 190 190 190 300 300 300 If , then = 1,
else = -1

1 1 1 -1 -1 -1 -1 1 1 1

Sample 6 120 180 186 190 210 210 210 250 270 300 If , then = -1,
else = 1

1 -1 -1 -1 -1 -1 -1 1 1 1

Sample 7 100 180 180 190 210 250 270 270 270 300 If , then = -1,
else = 1

1 -1 -1 -1 -1 1 1 1 1 1

Sample 8 100 120 186 186 186 210 210 250 270 300 If , then = -1,
else = 1

1 1 -1 -1 -1 -1 -1 1 1 1

Sample 9 100 160 180 180 190 210 210 250 300 300 If , then = -1,
else = 1

1 1 -1 -1 -1 -1 -1 1 1 1

Sample 10 100 100 100 100 160 160 250 250 270 270 If , then = -1,
else = 1

1 1 1 1 1 1 1 1 1 1

Table 7.6.3 shows the final classification results by majority vote after classifying the original 10 data by
classifiers obtained from each sample. we can obtain the final classification results using a majority vote by
adding the classified group of each classifier and examining the sign. The ensemble classification results by
bagging accurately classify all data.

Table 7.6.3 Classification results of each data by bagging 10 classifier

Classifier of each
sample

Income data

100 120 160 180 186 190 210 250 270 300

Classifier 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

Classifier 2 1 1 1 1 1 1 1 1 1 1

Classifier 3 1 1 1 -1 -1 -1 -1 -1 -1 -1

x y

x

y

c

x x ≤ 170 y

y
y

x x ≤ 300 y

y
y

x x ≤ 170 y

y
y

x x ≤ 150 y

y
y

x x ≤ 153 y

y
y

x x ≤ 230 y

y
y

x x ≤ 230 y

y
y

x x ≤ 230 y

y
y

x x ≤ 230 y

y
y

x x ≤ 50 y

y
y

x

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 41/57

Classifier 4 1 1 1 -1 -1 -1 -1 -1 -1 -1

Classifier 5 1 1 1 -1 -1 -1 -1 -1 -1 -1

Classifier 6 -1 -1 -1 -1 -1 -1 -1 1 1 1

Classifier 7 -1 -1 -1 -1 -1 -1 -1 1 1 1

Classifier 8 -1 -1 -1 -1 -1 -1 -1 1 1 1

Classifier 9 -1 -1 -1 -1 -1 -1 -1 1 1 1

Classifier 10 1 1 1 1 1 1 1 1 1 1

Total 2 2 2 -6 -6 -6 -6 2 2 2

Sign of Total 1 1 1 -1 -1 -1 -1 1 1 1

Actual group 1 1 1 -1 -1 -1 -1 1 1 1

The bagging ensemble method can reduce misclassification by reducing the variance of each classifier. The
performance of bagging depends on the stability of each classifier. If each classifier is not stable, bagging reduces
the error related to the random variability in the training data. Since the bagging ensemble method has the same
probability of extracting each data, it does not focus on classifying abnormal data such as extreme values.
Therefore, problems such as model overfitting do not occur even in noisy data.

7.6.2 R practice - Bagging

To use the bagging ensemble model using R, we need to install a package called adabag. From the main menu
of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear. Here, select ‘0-
Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘adabag’ and click ‘OK’.
'adabag' is a package for modeling of the bagging and adaboosting ensemble model. General usage and key
arguments of the function are described in the following table.

bagging
{adabag}

Applies the Bagging algorithm to a data set
Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single
classifiers.

bagging(formula, data, mfinal = 100, control, par=FALSE,...)

formula a formula, as in the lm function.

data a data frame in which to interpret the variables named in the formula

mfinal an integer, the number of iterations for which boosting is run or the number of trees to use.
Defaults to mfinal=100 iterations.

control options that control details of the rpart algorithm. See rpart.control for more details.

par if TRUE, the cross validation process is runned in parallel. If FALSE (by default), the function runs
without parallelization.

Details: Unlike boosting, individual classifiers are independent among them in bagging

Value: An object of class bagging, which is a list with the following components:

formula the formula used.

trees the trees grown along the iterations.

votes a matrix describing, for each observation, the number of trees that assigned it to each class.

prob a matrix describing, for each observation, the posterior probability or degree of support of each
class. These probabilities are calculated using the proportion of votes in the final ensemble.

y

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 42/57

class the class predicted by the ensemble classifier.

samples the bootstrap samples used along the iterations.

importance returns the relative importance of each variable in the classification task. This measure takes into
account the gain of the Gini index given by a variable in each tree.

An example of R commands for the bagging ensemble model using the iris data stored in R is as follows.

> install.packages('adbag') copy r command

> library(adabag) copy r command

> data(iris) copy r command

mfinal is an integer which is the number of iterations for which boosting is run
> iris.bagging <- bagging(Species~., data=iris, mfinal = 10))

copy r command

list the importance of variable in the classification
> iris.bagging$importance

Petal.Length Petal.Width Sepal.Length Sepal.Width
 79.46481 20.53519 0.00000 0.00000

copy r command

list the trees grown along the iterations.
> iris.bagging$trees

[[1]]
n= 150
node), split, n, loss, yval, (yprob)
 * denotes terminal node
1) root 150 94 virginica (0.32666667 0.30000000 0.37333333)
 2) Petal.Length< 2.45 49 0 setosa (1.00000000 0.00000000 0.00000000) *
 3) Petal.Length>=2.45 101 45 virginica (0.00000000 0.44554455 0.55445545)
 6) Petal.Width< 1.75 49 4 versicolor (0.00000000 0.91836735 0.08163265)
 12) Petal.Length< 4.95 42 0 versicolor (0.00000000 1.00000000 0.000000
00) *
 13) Petal.Length>=4.95 7 3 virginica (0.00000000 0.42857143 0.5714285
7) *
 7) Petal.Width>=1.75 52 0 virginica (0.00000000 0.00000000 1.00000000) *
...
...
...
[[10]]
n= 150
node), split, n, loss, yval, (yprob)
 * denotes terminal node
1) root 150 92 setosa (0.38666667 0.34666667 0.26666667)
 2) Petal.Length< 2.6 58 0 setosa (1.00000000 0.00000000 0.00000000) *
 3) Petal.Length>=2.6 92 40 versicolor (0.00000000 0.56521739 0.43478261)
 6) Petal.Length< 4.75 46 1 versicolor (0.00000000 0.97826087 0.02173913)
*
 7) Petal.Length>=4.75 46 7 virginica (0.00000000 0.15217391 0.84782609)
*

copy r command

plot the decision tree after iteration 10 data
> plot(iris.bagging$trees[[10]])

copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 43/57

> text(iris.bagging$trees[[10]]) copy r command

The R command to reclassify the entire iris data using the bagging model is as follows.

classify the iris data using the bagging model
> baggingpred <- predict(iris.bagging, newdata=iris)

copy r command

> table(baggingpred$class, iris[,5])

 setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 47 1
 virginica 0 3 49

copy r command

calculate the misclassification error
> baggingtb <- table(baggingpred$class, iris[,5])

copy r command

> baggingerror.rpart <- 1-(sum(diag(baggingtb))/sum(baggingtb)) copy r command

misclassification error is 2.67%
> baggingerror.rpart

[1] 0.02666667

copy r command

7.6.3 Boosting

In bagging, data is resampled with the same probability of being selected. Boosting is a method of extracting
data by weighting data depending on whether it is classified correctly or not in the previous stage, so they are more
likely to be selected as samples. In boosting, after samples are extracted and a classifier is made, the classification
results are used to modify the probability of each data being selected in the next bootstrap sampling.

When there are training data, the boosting method first gives each data an equal probability of being selected
as , just like bagging, and then extracts bootstrap data with replacement. After creating a classifier using this
bootstrap data, the original training data is classified by this classifier, either as a correct classification or a
misclassification. If the data is misclassified, the probability of this data being selected is increased, so it is more
likely to be selected in the next stage, and if the data is correctly classified, the probability of being selected in the
next stage is decreased. Since the data that was not extracted is also likely to be misclassified, the probability of
being selected is also increased. If this method is used repeatedly, data that is continuously misclassified will be
more focused.

Recently, many types of research on boosting algorithms have been studied, and the algorithms differ
depending on (1) ‘How do we modify the probability of extracting data in each boosting round?’ and (2) ‘How do
we synthesize the classifiers determined in each boosting round to make the final classification?’. We introduce the
widely used adaptive boosting algorithm called AdaBoosting.

AdaBoosting algorithm

n
1
n n

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 44/57

Let be the set of training data and the probability of each data being
selected is . When selecting the bootstrap sample for the first time, the probability of extracting each
data is made the same, that is, . Let the bootstrap samples be selected times and the
classifier obtained from each bootstrap sample be . The Adaboosting algorithm calculates the
misclassification rate of each classifier as follows.

Here, is the result of the classifier estimating the group of data , and has a value of
1 when the classifier fails to classify the data into the original group , and 0 otherwise. In other words,
is the error rate that weights the probability of selecting the data for each misclassification of data by the classifier

. The importance of the classifier is determined as follows.

If the misclassification rate is close to 0, the importance value increases, and conversely, if is close to 1,
the value decreases. The importance of the classifier is used to adjust the probability of data being
selected. If is the probability when th bootstrap sample is selected, the adjusted probability
for selecting ()th bootstrap sample is as follows.

This equation means that if the data is misclassified, then this data will be used for the next bootstrap sampling,
and it increases the probability of being selected so that it is more likely to be extracted, and if the data is correctly
classified, it decreases the probability of being selected in the next bootstrap sampling. Here, is a constant that
makes the sum of becomes one as follows.

If the misclassification rate exceeds 50% during the boosting round, the probability of each data being selected is
returned to and selection with replacement is performed.

The method of synthesizing the classification results of the classifiers generated for the data of which the
group is unknown does not use majority voting, but uses the result of weighting each classification result by the
importance .

The Adaboosting algorithm that synthesizes the above explanations is as follows.

[AdaBoosting algorithm]

Step 1 Let be the set of training data

Step 2 Let the initial probability being selected be .

Step 3 Let be the number of bootstrap samples.

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

p1, p2, . . . , pn

pi = 1
n , i = 1, 2, . . . ,n R

C1,C2, . . . ,CR

ϵk Ck

ϵk =
1

n
[

n

∑
i=1

pi I{Ck(xi) ≠ yi}], k = 1, 2, . . . ,R

Ck(xi) Ck xi I{Ck(xi) ≠ yi}

Ck xi yi ϵk

Ck αk Ck

αk =
1

2
ln

1 − ϵk

ϵk
, k = 1, 2, . . . ,R

ϵk αk ϵk

αk αk Ck

p
(k)
i , i = 1, 2, . . . ,n k

k + 1

p
(k+1)
i =

p
(k)
i

Zk

× e−αk if Ck(xi) = yi

=
p

(k)
i

Zk

× eαk if Ck(xi) ≠ yi

xi

Zk

p
(k+1)
1 , p(k+1)

2 , . . . , p(k+1)
n

n

∑
i=1

p
(k+1)
i = 1

pi = 1
n

R x

αk

C ∗(x) = argmaxv

R

∑
k=1

αk I(Ck(x) = v)

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

p
(1)
i = 1

n , i = 1, 2, . . . ,n

R

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 45/57

Step 4 for k = 1 to Rdo

Step 5 Generate bootstrap samples of size using

Step 6 Create classifier using bootstrap samples

Step 7 Apply to each data of whether it classifies correctly or not

Step 8 calculates the misclassification rate

Step 9 If then

Step 10 Set again initial probability

Step 11 Go back to Step 4

Step 12 end if

Step 13

Step 14

 is a constant that makes the sum of probability becomes 1.

Step 15 end for

Step 16 Classify an unknown data into the weighted majority vote of each classifier,

Example 7.6.2 (AdaBoosting)
Classify the data in Table 7.6.1 of Example 7.6.1 below using the Adaboosting ensemble method. The
classifier in each round uses a minimum entropy decision stump.

Table 7.6.1 10 customer data with income and purchase status

100 120 160 180 186 190 210 250 270 300

1 1 1 -1 -1 -1 -1 1 1 1

Answer

Since the number of data is = 10, at first, as in bagging, the probability of each data being selected is
given equally as = 0.1, and then 10 new bootstrap sampling data are extracted with replacement.
Assume that the data extracted by this method are as follows, the minimum entropy classifier is as
shown in Table 7.6.4.

Table 7.6.4 (Sample 1) 10 bootstrap samples for AdaBoosting and classifier

number Bootstrap sample Classifier

Sample 1 100 180 186 190 190 210 216 210 250 300 If , then = -1,
else = 1

1 -1 -1 -1 -1 -1 -1 -1 1 1

The classification results of the original data using the classifier and the process of updating the new
probability of selection are as in Table 7.6.5.

Table 7.6.5 Process of updating the new probability of selection using

Selction probability 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

100 120 160 180 186 190 210 250 270 300

1 1 1 -1 -1 -1 -1 1 1 1

Dk n p
(k)
i

Ck Dk

Ck D

ϵk = 1
n
[∑n

i=1 pi I{Ck(xi) ≠ yi}]

ϵk > 0.5

p
(1)
i = 1

n , i = 1, 2, . . . ,n

αk = 1
2 ln 1−ϵk

ϵk

p
(k+1)
i =

p
(k)
i

Zk
× e−αk if Ck(xi) = yi

=
p

(k)
i

Zk
× eαk if Ck(xi) ≠ yi

Z

x

C ∗(x) = argmaxv ∑R
k=1 αk I(Ck(x) = v)

x y

x

y

n
1
10

C1

C1

C1

x x ≤ 230 y

y
y

C1

C1

p
(1)
i

xi

yi

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 46/57

Classification by -1 -1 -1 -1 -1 -1 -1 1 1 1

1 1 1 0 0 0 0 0 0 0

0.1 0.1 0.1 0 0 0 0 0 0 0

, = 1.738

5.686 5.686 5.686 0.176 0.176 0.176 0.176 0.176 0.176 0.176

 above row 0.569 0.569 0.569 0.018 0.018 0.018 0.018 0.018 0.018 0.018

New selction probability 0.311 0.311 0.311 0.010 0.010 0.010 0.010 0.010 0.010 0.010

The 10 new bootstrap sampling data extracted with replacement using the new selection probability and the
classifier at this time are as shown in Table 7.6.5.

Table 7.6.5 (Sample 2) 10 bootstrap samples for AdaBoosting and classifier

number Bootstrap sample Classifier

Sample 2 100 120 120 120 120 120 160 160 160 160 If , then = -1,
else = 1

1 1 1 1 1 1 1 1 1 1

The classification results of the original data using the classifier and the process of updating the new
probability of selection are as in Table 7.6.6.

Table 7.6.6 Process of updating the new probability of selection using

Selction probability 0.311 0.311 0.311 0.010 0.010 0.010 0.010 0.010 0.010 0.010

100 120 160 180 186 190 210 250 270 300

1 1 1 -1 -1 -1 -1 1 1 1

Classification by 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 0 0 0

0 0 0 0.010 0.010 0.010 0.010 0 0 0

, = 2.758

0.063 0.063 0.063 15.78 15.78 15.78 15.78 0.063 0.063 0.063

 above row 0.02 0.02 0.02 0.158 0.158 0.158 0.158 0.006 0.006 0.006

New selction probability 0.028 0.028 0.028 0.228 0.228 0.228 0.228 0.001 0.001 0.001

The 10 new bootstrap sampling data extracted with replacement using the new selection probability and the
classifier at this time are as shown in Table 7.6.7.

Table 7.6.7 (Sample 3) 10 bootstrap samples for AdaBoosting and classifier

number Bootstrap sample Classifier

Sample 3 120 120 180 180 180 180 186 190 190 210 If , then = 1,
else = -1

1 1 -1 -1 -1 -1 -1 -1 -1 -1

The classification results of the original data using the classifier and the process of updating the new
probability of selection are as in Table 7.6.8.

C1(xi)

I(C1(xi) ≠ yi)

p
(1)
i I(C1(xi) ≠ yi)

ϵ1 = 0.03 α1 = 1
2 ln

1−ϵ1

ϵ1

e−α1 if C1(xi) = yi

eα1 if C1(xi) ≠ yi

p
(1)
i ×

Z1 = 1.829

p
(2)
i

C2

C2

C2

x x ≤ 50 y

y
y

C2

C2

p
(2)
i

xi

yi

C2(xi)

I(C2(xi) ≠ yi)

p
(2)
i I(C2(xi) ≠ yi)

ϵ2 = 0.004 α2 = 1
2 ln

1−ϵ2

ϵ2

e−α2 if C2(xi) = yi
eα2 if C2(xi) ≠ yi

p
(2)
i ×

Z2 = 0.6922

p
(3)
i

C3

C3

C3

x x ≤ 150 y

y
y

C3

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 47/57

Table 7.6.8 Process of updating the new probability of selection using

Selction probability 0.028 0.028 0.028 0.228 0.228 0.228 0.228 0.001 0.001 0.001

100 120 160 180 186 190 210 250 270 300

1 1 1 -1 -1 -1 -1 1 1 1

Classification by 1 1 1 -1 -1 -1 -1 -1 -1 -1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0.001 0.001 0.001

, = 4.0557

0.017 0.017 0.017 0.017 0.017 0.017 0.017 57.73 57.73 57.73

 above row 0.0005 0.0005 0.0005 0.004 0.004 0.004 0.004 0.058 0.058 0.058

New selction probability 0.003 0.003 0.003 0.021 0.021 0.021 0.021 0.303 0.303 0.303

For classification results of each classifier, the weighted sum is calculated using the classifier importance
, and the sign is examined to perform the final classification as shown in Table 7.6.9. Each classifier has an
accuracy of about 70% at best, but it can be seen that all data are classified accurately due to AdaBoosting
method.

Table 7.6.9 Final classification results using AdaBootstrap

100 120 160 180 186 190 210 250 270 300 Classifier
importance

 classification result -1 -1 -1 -1 -1 -1 -1 1 1 1

 classification result 1 1 1 1 1 1 1 1 1 1

 classification result 1 1 1 -1 -1 -1 -1 -1 -1 -1

Weighted sum of
classification result

5.08 5.08 5.08 -3.04 -3.04 -3.04 -3.04 0.44 0.44 0.44

Final classification result
(sign)

1 1 1 -1 -1 -1 -1 1 1 1

7.6.4 R practice - Adaboosting
R practice

To use the adaboosting ensemble model using R, we need to install a package called adabag. From the main
menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear. Here, select
‘0-Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select ‘adabag’ and click
‘OK’. 'adabag' is a package for modeling of the bagging and adaboosting ensemble model. General usage and key
arguments of the function are described in the following table.

boosting
{adabag}

Applies the AdaBoost.M1 and SAMME algorithms to a data set
Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms
using classification trees as single classifiers.

boosting(formula, data, boos = TRUE, mfinal = 100, coeflearn = 'Breiman', control,...)

formula a formula, as in the lm function.

data a data frame in which to interpret the variables named in the formula

C3

p
(3)
i

xi

yi

C3(xi)

I(C3(xi) ≠ yi)

p
(3)
i I(C3(xi) ≠ yi)

ϵ3 = 0.0003 α3 = 1
2 ln

1−ϵ3

ϵ3

e−α3 if C3(xi) = yi
eα3 if C3(xi) ≠ yi

p
(3)
i ×

Z3 = 0.1904

p
(4)
i

αk

xi

C1(xi) α1 = 1.738

C2(xi) α2 = 2.758

C3(xi) α3 = 4.055

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 48/57

boos if TRUE (by default), a bootstrap sample of the training set is drawn using the weights for each
observation on that iteration. If FALSE, every observation is used with its weights.

mfinal an integer, the number of iterations for which boosting is run or the number of trees to use.
Defaults to mfinal=100 iterations.

coeflearn if 'Breiman'(by default), alpha=1/2ln((1-err)/err) is used. If 'Freund' alpha=ln((1-err)/err) is used.
In both cases the AdaBoost.M1 algorithm is used and alpha is the weight updating coefficient. On
the other hand, if coeflearn is 'Zhu' the SAMME algorithm is implemented with alpha=ln((1-
err)/err)+ ln(nclasses-1).

control options that control details of the rpart algorithm. See rpart.control for more details.

Details: AdaBoost.M1 and SAMME are simple generalizations of AdaBoost for more than two classes. In
AdaBoost-SAMME the individual trees are required to have an error lower than 1-1/nclasses instead of 1/2 of
the AdaBoost.M1

Value: An object of class boosting, which is a list with the following components:

formula the formula used.

trees the trees grown along the iterations.

weights a vector with the weighting of the trees of all iterations.

votes a matrix describing, for each observation, the number of trees that assigned it to each class,
weighting each tree by its alpha coefficient.

prob a matrix describing, for each observation, the posterior probability or degree of support of each
class. These probabilities are calculated using the proportion of votes in the final ensemble.

class the class predicted by the ensemble classifier.

importance returns the relative importance of each variable in the classification task. This measure takes into
account the gain of the Gini index given by a variable in a tree and the weight of this tree.

An example of R commands for the adaboosting ensemble model using the iris data stored in R is as follows.

> install.packages('adbag') copy r command

> library(adabag) copy r command

> data(iris) copy r command

mfinal is an integer which is the number of iterations for which boosting is run
> iris.adaboost <- boosting(Species~., data = iris, boos = TRUE, mfinal = 10)

copy r command

list the importance of variable in the classification
> iris.adaboost$importance

Petal.Length Petal.Width Sepal.Length Sepal.Width
 61.558263 26.329296 5.586443 6.525997

copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 49/57

list the trees grown along the iterations.
> iris.adaboost$trees

[[1]]
n= 150
node), split, n, loss, yval, (yprob)
 * denotes terminal node
 1) root 150 94 virginica (0.32666667 0.30000000 0.37333333)
 2) Petal.Length< 2.45 49 0 setosa (1.00000000 0.00000000 0.00000000) *
 3) Petal.Length>=2.45 101 45 virginica (0.00000000 0.44554455 0.55445545)
 6) Petal.Width< 1.75 49 4 versicolor (0.00000000 0.91836735 0.08163265)
 12) Petal.Length< 4.95 42 0 versicolor (0.00000000 1.00000000 0.000000
00) *
 13) Petal.Length>=4.95 7 3 virginica (0.00000000 0.42857143 0.5714285
7) *
 7) Petal.Width>=1.75 52 0 virginica (0.00000000 0.00000000 1.00000000)
*
...
...
...
[[10]]
n= 150
node), split, n, loss, yval, (yprob)
 * denotes terminal node
[[10]]
n= 150
node), split, n, loss, yval, (yprob)
 * denotes terminal node
 1) root 150 77 virginica (0.1133333 0.4000000 0.4866667)
 2) Petal.Length< 2.6 17 0 setosa (1.0000000 0.0000000 0.0000000) *
 3) Petal.Length>=2.6 133 60 virginica (0.0000000 0.4511278 0.5488722)
 6) Petal.Length< 5.15 96 36 versicolor (0.0000000 0.6250000 0.3750000)
 12) Petal.Width< 1.75 65 13 versicolor (0.0000000 0.8000000 0.2000000)
 24) Sepal.Length>=4.95 57 7 versicolor (0.0000000 0.8771930 0.122807
0)
 48) Petal.Length< 4.95 34 0 versicolor (0.0000000 1.0000000 0.0000
000) *
 49) Petal.Length>=4.95 23 7 versicolor (0.0000000 0.6956522 0.3043
478)
 98) Petal.Width>=1.55 16 0 versicolor (0.0000000 1.0000000 0.000
0000) *
 99) Petal.Width< 1.55 7 0 virginica (0.0000000 0.0000000 1.00000
00) *
 25) Sepal.Length< 4.95 8 2 virginica (0.0000000 0.2500000 0.7500000)
*
 13) Petal.Width>=1.75 31 8 virginica (0.0000000 0.2580645 0.7419355)
 26) Sepal.Width>=3.15 8 0 versicolor (0.0000000 1.0000000 0.0000000)
*
 27) Sepal.Width< 3.15 23 0 virginica (0.0000000 0.0000000 1.0000000)
*
 7) Petal.Length>=5.15 37 0 virginica (0.0000000 0.0000000 1.0000000) *

copy r command

plot the decision tree after iteration 10 data
> plot(iris.adaboost$trees[[10]])

copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 50/57

> text(iris.adaboost$trees[[10]]) copy r command

The R command to reclassify the entire iris data using the bagging model is as follows.

classify the iris data using the adaboosting model
> adaboostpred <- predict(iris.adaboost, newdata=iris)

copy r command

> table(adaboostpred$class, iris[,5])

 setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 50 0
 virginica 0 0 50

copy r command

calculate the misclassification error
> adaboosttb <- table(adaboostpred$class, iris[,5])

copy r command

> adaboosterror <- 1-(sum(diag(adaboosttb))/sum(adaboosttb)) copy r command

misclassification error is 2.67%
> adaboosterror

[1] 0

copy r command

7.6.5 Random forest

Random forest is an ensemble method designed to combine the classification results of several decision tree
models. However, it is also used when there are many variables. Each decision tree is created using a subset of
variables independently selected from all variables and then synthesized. The generation of the subset of variables
can use random or probability distributions. The bagging method using decision trees can be considered a special
case of random forest. The general random forest algorithm is as follows.

[Random forest algorithm]

Step 1 Let be the set of training data,
and be the number of variables.

Step 2 Let be the number of random forest samples.

Step 3 for k = 1 to Rdo

Step 4 Generate random forest samples with the subset of all variables.

Step 5 Create classifier using random forest samples

Step 6 end for

Step 7 Classify an unknown data by the majority vote of each classifier.

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
m

R

Dk

Ck Dk

x

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 51/57

The ensemble method using random forests may not be efficient if each decision tree classifier is related to
each other. In other words, selecting a good set of variables is the key to creating an efficient random forest
ensemble. There have been many studies on selecting a set of variables and expanding the decision tree using it.
Please refer to the relevant references.

There have been many comparative studies on various ensemble methods. It is known that the efficiency of the
Adaboosting method and the random forest method is relatively good as a result of experiments using actual data.

7.6.6 R practice - Random forest

This is a method that adds a random process to bagging. The process of extracting bootstrap samples from the
original data and forming a tree for each bootstrap sample is similar to bagging, but instead of selecting the
optimal split among all predictors for each node, it randomly extracts predictors and creates the optimal split
among the extracted variables. In other words, if all variables are used, it becomes bagging, and if variables are
randomly extracted and split, it becomes a random forest. Predictions for new data are made by majority vote in
the case of classification and by taking the average in the case of regression, which is the same as other ensemble
models.

To use the random forest ensemble model using R, we need to install a package called randomForest. From
the main menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN mirror’ will appear.
Here, select ‘0-Cloud [https]’ and click ‘OK’. Then, when the window called ‘Packages’ appears, select
‘randomForest’ and click ‘OK’. 'randomForest' is a package for modeling of the random forest ensemble model.
General usage and key arguments of the function are described in the following table.

randomForest
{randomForest}

Classification and Regression with Random Forest
randomForest implements Breiman's random forest algorithm (based on Breiman and
Cutler's original Fortran code) for classification and regression. It can also be used in
unsupervised mode for assessing proximities among data points.

S3 method for class 'formula'
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500, mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))), weights=NULL, replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)), nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes = NULL, importance=FALSE, localImp=FALSE, nPerm=1, proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE, keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

data an optional data frame containing the variables in the model. By default the variables are
taken from the environment which randomForest is called from.

subset an index vector indicating which rows should be used. (NOTE: If given, this argument must be
named.)

na.action A function to specify the action to be taken if NAs are found. (NOTE: If given, this argument
must be named.)

x, formula a data frame or a matrix of predictors, or a formula describing the model to be fitted (for the
print method, an randomForest object).

y A response vector. If a factor, classification is assumed, otherwise regression is assumed. If
omitted, randomForest will run in unsupervised mode.

xtest a data frame or matrix (like x) containing predictors for the test set.

ytest response for the test set.

ntree Number of trees to grow. This should not be set to too small a number, to ensure that every
input row gets predicted at least a few times.

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 52/57

mtry Number of variables randomly sampled as candidates at each split. Note that the default
values are different for classification (sqrt(p) where p is number of variables in x) and
regression (p/3)

weights A vector of length same as y that are positive weights used only in sampling data to grow each
tree (not used in any other calculation)

replace Should sampling of cases be done with or without replacement?

classwt Priors of the classes. Need not add up to one. Ignored for regression.

cutoff (Classification only) A vector of length equal to number of classes. The ‘winning’ class for an
observation is the one with the maximum ratio of proportion of votes to cutoff. Default is 1/k
where k is the number of classes (i.e., majority vote wins).

strata A (factor) variable that is used for stratified sampling.

samplesize Size(s) of sample to draw. For classification, if sampsize is a vector of the length the number of
strata, then sampling is stratified by strata, and the elements of sampsize indicate the
numbers to be drawn from the strata.

nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees to be grown
(and thus take less time). Note that the default values are different for classification (1) and
regression (5).

maxnodes Maximum number of terminal nodes trees in the forest can have. If not given, trees are grown
to the maximum possible (subject to limits by nodesize). If set larger than maximum possible,
a warning is issued.

importance Should casewise importance measure be computed? (Setting this to TRUE will override
importance.)

localImp Should casewise importance measure be computed? (Setting this to TRUE will override
importance.)

nPerm Number of times the OOB data are permuted per tree for assessing variable importance.
Number larger than 1 gives slightly more stable estimate, but not very effective. Currently
only implemented for regression.

proximity Should proximity measure among the rows be calculated?

oob.prox Should proximity be calculated only on “out-of-bag” data?

norm.votes If TRUE (default), the final result of votes are expressed as fractions. If FALSE, raw vote counts
are returned (useful for combining results from different runs). Ignored for regression.

do.trace If set to TRUE, give a more verbose output as randomForest is run. If set to some integer, then
running output is printed for every do.trace trees.

keep.forest If set to FALSE, the forest will not be retained in the output object. If xtest is given, defaults
to FALSE.

corr.bias perform bias correction for regression? Note: Experimental. Use at your own risk.

keep.inbag Should an n by ntree matrix be returned that keeps track of which samples are “in-bag” in
which trees (but not how many times, if sampling with replacement)

Value: An object of class randomForest, which is a list with the following components:

call the original call to randomForest

type one of regression, classification, or unsupervised.

predicted the predicted values of the input data based on out-of-bag samples.

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 53/57

importance a matrix with nclass + 2 (for classification) or two (for regression) columns. For classification,
the first nclass columns are the class-specific measures computed as mean descrease in
accuracy. The nclass + 1st column is the mean descrease in accuracy over all classes. The last
column is the mean decrease in Gini index. For Regression, the first column is the mean
decrease in accuracy and the second the mean decrease in MSE. If importance=FALSE, the last
measure is still returned as a vector.

importanceSD The “standard errors” of the permutation-based importance measure. For classification, a p by
nclass + 1 matrix corresponding to the first nclass + 1 columns of the importance matrix. For
regression, a length p vector.

localImp a p by n matrix containing the casewise importance measures, the [i,j] element of which is the
importance of i-th variable on the j-th case. NULL if localImp=FALSE.

ntree number of trees grown.

mtry number of predictors sampled for spliting at each node.

forest (a list that contains the entire forest; NULL if randomForest is run in unsupervised mode or if
keep.forest=FALSE.

err.rate (classification only) vector error rates of the prediction on the input data, the i-th element
being the (OOB) error rate for all trees up to the i-th.

confusion (classification only) the confusion matrix of the prediction (based on OOB data).

votes (classification only) a matrix with one row for each input data point and one column for each
class, giving the fraction or number of (OOB) ‘votes’ from the random forest.

oob.times number of times cases are ‘out-of-bag’ (and thus used in computing OOB error estimate)

proximity if proximity=TRUE when randomForest is called, a matrix of proximity measures among the
input (based on the frequency that pairs of data points are in the same terminal nodes).

mse (regression only) vector of mean square errors: sum of squared residuals divided by n.

rsq (regression only) “pseudo R-squared”: 1 - mse / Var(y).

test if test set is given (through the xtest or additionally ytest arguments), this component is a list
which contains the corresponding predicted, err.rate, confusion, votes (for classification) or
predicted, mse and rsq (for regression) for the test set. If proximity=TRUE, there is also a
component, proximity, which contains the proximity among the test set as well as proximity
between test and training data.

An example of R commands for the random forest ensemble model using the iris data stored in R is as follows.

> install.packages('randomForest') copy r command

> library(randomForest) copy r command

> data(iris) copy r command

> iris.forest <- randomForest(Species~., data=iris, ntree = 100, proximity=TRUE) copy r command

The R command to reclassify the entire iris data using the random forest model is as follows.

classify the iris data using the bagging model
> table(predict(iris.forest), iris[,5])

 setosa versicolor virginica
 setosa 50 0 0
 versicolor 0 47 6
 virginica 0 3 44

copy r command

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 54/57

calculate the misclassification error
> foresttb <- table(predict(iris.forest), iris[,5])

copy r command

> foresterror <- 1-(sum(diag(foresttb))/sum(foresttb)) copy r command

misclassification error is 2.67%
> foresterror

[1] 0.06

copy r command

7.7 Classification of multiple groups
Support vector machines and Adaboosting classification models were designed as a two-group classification

method. However, in reality, classification problems of multiple groups often occur, so a method of applying a
two-group classification model to classification problems of multiple groups has been studied.

When there are classification groups, Let us denote them as . One way to apply a two-
group classification method to the classification of multiple groups is to view the remaining groups as one group
for each group , and view it as a two-group problem of { , other groups}. This is called the (1 :)
method. The second method is to classify the groups into two pairwise groups { }, which requires the
creation of classifiers, and it is called the (1:1) method. When creating a classifier, data that do not
belong to two groups { } are ignored. When classifying data whose group membership is unknown, a
method of applying multiple classifiers and classifying them into one group by majority vote is often used. There
is a possibility of obtaining equal votes when using a majority vote. To prevent this, if the results of the two-group
classification are expressed as the probability of belonging to each group, then these are combined to classify them
into the group with the higher probability.

Example 7.7.1 (Classification of multiple groups)
Suppose there are 4 classification groups { } and Let us apply the (1:3) method. For example,
if (), was applied to one data whose group affiliation was unknown, it was classified into

 group, Let us denote it as + group. if () was applied to the data, it was classified into
 group, Let us denote it as - group. Similarly, if () was applied to the data,

it was classified into group, which is - group, if () was applied to the
data, it was classified into group, which is - group. The classification results are summarized
as in Table 7.7.1. What is the final classification result of the data using (1:3) method?

Table 7.7.1 Classification results of (1:3) method

Method (1:3) groups + :
- :

+ :
- :

+ :
- :

+ :
- :

Classification result + - - -

When we applied the (1:1) method to the same data, there are 6 classification and their classification
results are summarized as in Table 7.7.2. What is the final classification result of the data using (1:1)
method?

Table 7.7.2 Classification results of (1:3) method

Method (1:1) groups + :
- :

+ :
- :

+ :
- :

+ :
- :

+ :
- :

+ :
- :

Classification result + + - + - +

Answer

The classification results of (1:3) method ,as shown in Table 7.7.1 means that group receives 4 votes and
the other groups receive 2 votes. Therefore, the data is classified into the group by the majority vote.

K G1,G2, . . . ,GK

Gi Gi K − 1

K Gi,Gj

KC2 = K(K−1)
2

Gi,Gj

G1,G2,G3,G4
G1 : {G2,G3,G4}

G1 G2 : {G1,G3,G4}
{G1,G3,G4} G3 : {G1,G2,G4}

{G1,G2,G4} G4 : {G1,G2,G3}
{G1,G2,G3}

G1

{G2,G3,G4}
G2

{G1,G3,G4}
G3

{G1,G2,G4}
G4

{G1,G2,G3}

G1

G2

G1

G3

G1

G4

G2

G3

G2

G4

G3

G4

G1
G1

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 55/57

When applying the (1:1) method, the and groups receive 2 votes, and the and groups receive
1 vote, and are classified into the or group.

7.8 Exercise

7.1 The SAT scores (out of 100) and essay scores of 10 accepted applicants, denoted P, for a college, 10
failed applicants, denoted F, are as follows.

Group SAT Essay

P 96 95

P 86 83

P 76 88

P 73 89

P 85 80

P 83 81

P 92 80

P 93 95

P 87 90

P 92 90

N 76 70

N 82 70

N 80 80

N 70 85

N 65 75

N 71 72

N 72 80

N 70 65

N 64 70

N 73 80

1) Assuming that the distributions of the two groups are multivariate normal distributions with the same
covariance, find a Bayesian classification function. Assume that the prior probability of each group is
0.5. Classify whether a student with an 80 SAT and an essay score of 80 will enter the university.

2) Find a Logistic regression function. Classify whether a student with an 80 SAT and an essay score of 80
will enter the university.

3) Classify whether a student with an 80 SAT and an essay score of 80 will enter the university using the 3-
nearest neighbor classification model.

4) Apply a neural network model. Classify whether a student with an 80 SAT and an essay score of 80 will
enter the university.

5) Apply a support vector model. Classify whether a student with an 80 SAT and an essay score of 80 will
enter the university.

7.2 The following is a survey of 10 people visiting a department store to determine whether they
purchased a product and their age. Those who purchased were denoted as Y, those who did not
purchase were denoted as N. The data were sorted in ascending order of age. We want to divide
age into two groups to apply a decision tree model. What is the best boundary value for the
division?

G1 G4 G2 G3
G1 G4

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 56/57

Group Age

N 25

N 27

N 31

Y 33

N 35

Y 41

N 43

Y 49

Y 51

Y 55

3/15/25, 2:54 AM Chapter 7

file:///D:/estat/eLearning/en/DataScience/chapter07.html 57/57

