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CHAPTER OBJECTIVES

The clustering analysis is a technique for finding clusters of data with similar properties
when data from multiple groups are mixed, and the group to which each data belongs is
unknown. We introduce the followings in this chapter.

• Basic concepts of clustering analysis and the evaluation methods of clustering models.
• Hierarchical clustering model, which has a long history, in section 8.2.
• -means clustering model, which is frequently used in real practice, in section 8.3.

8.1 Basic concepts of clustering analysis
Classification analysis or supervised learning studied in Chapters 6 and 7 used data

whose group affiliation is known to obtain a classification function and then decided the data
whose group affiliation is unknown would be classified into which group using the
classification function. However, when analyzing real data, there is a need to classify data
whose group affiliation is unknown into homogeneous groups, and it is called clustering
analysis or unsupervised learning. Clustering analysis can help understand the structure of
data (clustering for understanding) in situations where the content of the data is not well
known, or it can be a helpful starting point (clustering for utility) for other analyses by
identifying the characteristics of the formed clusters and the relationships between clusters.
Clustering analysis is used in various fields, such as psychology, biology, business
administration, and information science.

Clustering analysis is a method of forming clusters based on the similarity or relationship
between each data, such that the data in a cluster are similar and the data in other clusters are
different. At this time, the higher the similarity within a cluster, the better, and the differences
between clusters should be as different as possible. However, it is generally difficult to define
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a cluster, and it is unclear how many clusters to divide into. Many types of clustering
analysis models have been developed to apply to various types of data, but there is hardly a
single clustering analysis model that is satisfactory for all types of applications. Each
clustering analysis model can show different performance when the data dimension is low or
high, when the data size is small or large, when the data density is small or high when there
are few or many outliers or extreme points, and when the data properties are discrete or
continuous. In general, after applying several clustering analysis models, an appropriate
model is selected based on the analyst's judgment.

In this chapter, we first introduce the hierarchical clustering model, which has been used
for a long time. Then, we introduce the -means clustering, which is widely used.

Classification of clustering analysis models

Clustering analysis models are divided into hierarchical clustering models and partitional
clustering models. The hierarchical clustering model allows subclusters within a cluster,
and it groups the entire data into one cluster, divides it into subclusters, and then divides each
subcluster again. It can display the types of whole clusters in a tree shape. Section 8.2
introduces hierarchical clustering models. The partitional clustering model is a method that
divides the entire data without overlapping each other, and Section 8.3 introduces the -
means clustering model.

Clustering analysis models can also be divided into exclusive clustering analysis, where
one data must belong to one cluster, and inclusive clustering analysis, where one data can
belong to multiple clusters. The -means clustering model is an exclusive clustering
analysis, and the fuzzy clustering model and the mixed distribution clustering model are
inclusive clustering analyses. The fuzzy cluster and mixed distribution clustering models
indicate the weight or probability that each data belongs to each cluster as a number between
0 and 1. However, since the inclusive clustering analysis model generally classifies one data
into a group with a higher probability, the final data cluster can be an exclusive clustering
analysis.

In addition, clustering analysis models are also classified into prototype-based models,
density-based models, and graph-based models. The prototype-based model determines the
form of the cluster based on how close the data is to the prototype of each cluster, which has
been determined in advance. The -means clustering model is a prototype-based model. In
the case of continuous data, the cluster average is usually set as the prototype, and in the case
of discrete data, the mode of the cluster is used as the prototype. The density-based model is
a method that considers an area where data is distributed as a cluster when the density is very
high. The graph-based model is a method that considers each data as a node, connects the
nodes based on a set distance, and then determines the data corresponding to the connected
nodes as a cluster. The Kohonen clustering model belongs to this.
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Evaluation of clustering analysis models

The classification analysis model was created using training data, and then its accuracy
was evaluated using test data. However, evaluating which clustering analysis model is good
is difficult, and the following factors are considered.

• Clustering tendency for a specific data set
• Number of accurate clusters
• Comparison of characteristics of formed clusters

Various measures can be considered for evaluating these factors, such as the response
within a cluster, cohesion and separation between clusters. In the case of clustering models
that utilize distance or similarity between data, the cohesion of cluster  and the separation
between two clusters  and  are defined as follows. Here,  is the distance between
data  and data .

In the clustering model based on the prototype, the cohesion and separation are defined
as follows when the centroids of clusters  and clusters  are  and , respectively.

In the case of cohesion, if the distance  between the data  of cluster and the center
 is defined as the squared Euclidean distance, the cohesion of cluster  becomes the sum

of squared error (SSE).

When there are  clusters and the number of data in cluster  is , the cohesion of the
entire clustering model is calculated as the weighted sum of the cohesion of each cluster, and
the weight value  can be , , or other various measures ​​depending on the situation.

8.2 Hierachical clustering model
The hierarchical clustering model is a widely used method with a long history, and

there are two main approaches to forming clusters. The agglomerative method starts from
one data and groups the closest clusters in order. There are several variations depending on
how the distance between clusters is defined. The second is the divisive method, which
considers all data as one cluster and divides them in order so that the final cluster becomes
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one data. There are several variations depending on which cluster is first divided and how it
is divided. In this section, only the agglomerative hierarchical clustering model is introduced.

The result of hierarchical clustering is often displayed in a dendrogram similar to a tree,
as shown on <Figure 8.2.1>, which shows the relationship between clusters and subclusters
and the order in which clusters are formed. The subset plot displays the entire data as one
set, as shown in <Figure 8.2.2>, and displays each hierarchical cluster as a subset plot within
this set.

<Figure 8.2.1> Dendrogram for the results of hierarchical clustering

<Figure 8.2.2> Subset plot for the results of hierarchical clustering

Let  number of data observed for the  variables, , be denoted as
. The agglomerative hierarchical clustering algorithm first calculates the  × 

distance matrix or similarity matrix, , between all data where  means the
distance between data  and .

n m x = (x1,x2, . . .xm)

x1, x2, . . . xn n n

D = {dij} dij
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After considering each data as a cluster, the two closest clusters are grouped into one cluster,
and the similarity matrix between this cluster and the remaining clusters is modified. At this
time, the similarity between clusters must be defined. The same method is repeated until the
number of clusters becomes one, which can be summarized as the following algorithm.

Agglomerative hierarchical clustering algorithm

Step 1 Consider each data as one cluster and calculate the similarity matrix of all data.

Step 2 repeat

Step 3 Group the two closest clusters into one cluster.

Step 4 Obtain the similarity matrix between all clusters including the newly formed cluster.

Step 5 until  (the number of clusters becomes one)

8.2.1 Method of linkage

The hierarchical clustering algorithm has several variations depending on how the
distance between clusters is defined. There are several methods for defining the distance
between a cluster and other clusters: single linkage, complete linkage, average linkage,
median linkage, centroid linkage, and Ward method.

A. Single linkage

In the single linkage or shortest distance method, if the data with the closest distance in
the  ×  distance matrix  are  and , the two data are first grouped to form a
cluster . The next step calculates the distance between cluster  and the remaining

 other data or clusters. The single linkage distance between cluster  and cluster 
is calculated as follows:

In the modified distance matrix, the two data or clusters with the closest distance are
combined into a new cluster. Repeat this process until a single cluster includes all data.

Example 8.2.1 The five observed data for two variables  and  and the matrix of
squared Euclid distances between these data are as follows. Create a hierarchical
cluster using the single linkage method.

Table 8.2.1 Five observed data and the matrix of squared Euclid distances

Distance/th>

Data

(1, 5) 0

n n D = {dij} U V

(UV ) (UV )

n − 2 (UV ) W

d(UV )W = min(dUW , dVW )

x1 x2

(x1,x2) A B C D E

A
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(2, 4) 2 0

(4, 6) 10 8 0

(4, 3) 13 5 9 0

(5, 3) 20 10 10 1 0

Answer

Since the distance between data  and  is 1, which is the minimum,  is the first
cluster, and the distance between cluster  and the remaining data is calculated
using the single linkage method, and the distance matrix is ​​modified as follows.

Table 8.2.2 Modified distance matrix with cluster  using the single linkage

Distance/th>

Cluster

0

2 0

10 8 0

13 5 9 0

Here, the minimum distance is  = 2, so  becomes the next cluster. If we
calculate the distance between clusters  and  ,  using the single linkage
method and modify the distance matrix, we get the following.

Table 8.2.3 Modified distance matrix with cluster  using the single
linkage

Distance/th>

Cluster

0

8 0

5 9 0

Here, the minimum distance is  = 5, so  becomes the next
cluster. If we calculate the distance between clusters  and  using the single
linkage method, we get the following.

B

C

D

E

D E (DE)

(DE)

d((DE),A) = min(d(D,A), d(E,A)) = min(13, 20) = 13

d((DE),B) = min(d(D,B), d(E,B)) = min(5, 10) = 5
d((DE),C) = min(d(D,C), d(E,C)) = min(9, 10) = 9

(DE)

A B C (DE)

A

B

C

(DE)

d(A,B) (AB)
(AB) C (DE)

d((AB),C) = min(d(A,C), d(B,C)) = min(10, 8) = 8

d((AB), (DE)) = min(d(A, (DE)), d(B, (DE)) = min(13, 5) = 5

(AB)

(AB) C (DE)

(AB)

C

(DE)

(d(AB), (DE)) (AB)(DE)
(AB)(DE) C

d((AB)(DE),C) = min(d((AB),C), d((DE),C)) = min(8, 9) = 8
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If the above single linkage method is displayed as a dendrogram, it is as shown in
<Figure 8.2.3>.

<Figure 8.2.3> Hierarchical clustering dendrogram using the single linkage

B. Complete linkage

In the complete linkage or maximum distance method, if the data with the closest
distance in the  ×  distance matrix  are  and , the two data are first grouped to
form a cluster . The next step calculates the distance between cluster  and the
remaining  other data or clusters. The complete linkage distance between cluster 
and cluster  is calculated as follows:

In the modified distance matrix, the two data or clusters with the closest distance are
combined into a new cluster. Repeat this process until a single cluster includes all data.

Example 8.2.2 The five observed data for two variables  and  and the matrix of
squared Euclid distances between these data are as follows. Create a hierarchical
cluster using the complete linkage method.

Table 8.2.4 Five observed data and the matrix of squared Euclid distances

Distance/th>

Data

(1, 5) 0

(2, 4) 2 0

(4, 6) 10 8 0

(4, 3) 13 5 9 0

(5, 3) 20 10 10 1 0

Answer

Since the distance between data  and  is 1, which is the minimum,  is the first
cluster, and the distance between cluster  and the remaining data is calculated
using the complete linkage method, and the distance matrix is ​​modified as follows.

n n D = {dij} U V

(UV ) (UV )

n − 2 (UV )

W

d(UV )W = max(dUW , dVW )

x1 x2

(x1,x2) A B C D E

A

B

C

D

E

D E (DE)
(DE)
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Table 8.2.5 Modified distance matrix with cluster  using the complete linkage

Distance/th>

Cluster

0

2 0

10 8 0

20 10 10 0

Here, the minimum distance is  = 2, so  becomes the next cluster. If we
calculate the distance between clusters  and  ,  using the complete linkage
method and modify the distance matrix, we get the following.

Table 8.2.6 Modified distance matrix with cluster  using the complete
linkage

Distance

Cluster

0

10 0

20 10 0

Here, the minimum distance is  =  = 10, so  or 
becomes the next cluster. Let's select  is the next cluster. If we calculate the
distance between clusters  using the complete linkage method, we get the
following.

If the above complete linkage method is displayed as a dendrogram, it is as shown in
<Figure 8.2.4>.

d((DE),A) = max(d(D,A), d(E,A)) = max(13, 20) = 20
d((DE),B) = max(d(D,B), d(E,B)) = max(5, 10) = 10

d((DE),C) = max(d(D,C), d(E,C)) = max(9, 10) = 10

(DE)

A B C (DE)

A

B

C

(DE)

d(A,B) (AB)
(AB) C (DE)

d((AB),C) = max(d(A,C), d(B,C)) = max(10, 8) = 10
d((AB), (DE)) = max(d(A, (DE)), d(B, (DE)) = max(20, 10) = 20

(AB)

(AB) C (DE)

(AB)

C

(DE)

d((AB),C) d(C, (DE)) (AB)C C(DE)

C(DE)
(AB)

d((AB),C(DE)) = max(d((AB),C), d((AB), (DE))) = max(10, 20) = 20
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<Figure 8.2.4> Hierarchical clustering dendrogram using the complete linkage

C. Average linkage

In the average linkage method, if the data with the closest distance in the  ×  distance
matrix  are  and , the two data are first grouped to form a cluster . The next
step calculates the average distance between cluster  and the other cluster  as follows.

Here  is the distance between the data  in the cluster  and the data  in the
cluster , and  and  are the number of data in the cluster  and  respectively.
In the modified distance matrix, the two data or clusters with the closest distance are
combined into a new cluster. Repeat this process until a single cluster includes all data.

Example 8.2.3 The five observed data for two variables  and  and the matrix of
squared Euclid distances between these data are as follows. Create a hierarchical
cluster using the average linkage method.

Table 8.2.7 Five observed data and the matrix of squared Euclid distances

Distance/th>

Data

(1, 5) 0

(2, 4) 2 0

(4, 6) 10 8 0

(4, 3) 13 5 9 0

(5, 3) 20 10 10 1 0

Answer

n n

D = {dij} U V (UV )

(UV ) W

d(UV )W =
∑

xi∈(UV ) ∑xj∈W
d(xi, xj)

n(UV ) × nW

d(xi, xj) xi (UV ) xj

W n(UV ) nW (UV ) W

x1 x2

(x1,x2) A B C D E

A

B

C

D

E
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Since the distance between data  and  is 1, which is the minimum,  is the first
cluster, and the distance between cluster  and the remaining data is calculated
using the average linkage method, and the distance matrix is ​​modified as follows.

Table 8.2.8 Modified distance matrix with cluster  using the single linkage

Distance/th>

Cluster

0

2 0

10 8 0

16.5 7.5 9.5 0

Here, the minimum distance is  = 2, so  becomes the next cluster. If we
calculate the distance between clusters  and  ,  using the average linkage
method and modify the distance matrix, we get the following.

Table 8.2.9 Modified distance matrix with cluster  using the average
linkage

Distance/th>

Cluster

0

9 0

12 9.5 0

Here, the minimum distance is  = 9, so  becomes the next cluster. If
we calculate the distance between clusters  and  using the average linkage
method, we get the following.

If the above average linkage method is displayed as a dendrogram in <Figure 8.2.5>.

D E (DE)
(DE)

d((DE),A) =
d(D,A)+d(E,A)

2×1 = 13+20
2 = 16.5

d((DE),B) =
d(D,B)+d(E,B)

2×1 = 5+10
2 = 7.5

d((DE),C) =
d(D,C)+d(E,C)

2×1 = 9+10
2 = 9.5

(DE)

A B C (DE)

A

B

C

(DE)

d(A,B) (AB)
(AB) C (DE)

d((AB),C) =
d(A,C)+d(B,C)

2×1 = 10+8
2 = 9

d((AB), (DE)) =
d(A,D)+d(A,E)+d(B,D)+d(B,E)

2×2 = 13+20+5+10
4 = 12

(AB)

(AB) C (DE)

(AB)

C

(DE)

(d(AB),C) (AB)C

(AB)C (DE)

d((AB)C, (DE)) =
d(A,D)+d(A,E)+d(B,D)+d(B,E)+d(C,D)+d(C,E)

3×2 = 12+20+5+10+9+10
6 = 11.1
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<Figure 8.2.5> Hierarchical clustering dendrogram using the average linkage

D. Centroid linkage

In the centroid linkage method, the distance between two clusters is calculated as the
distance between the centroids of the two clusters. If the number of data belonging to cluster

 is  and the centroid of the cluster is , and the number of data belonging to cluster  is
 and the centroid of the cluster is , then the distance between two clusters, , is

defined as the squared Euclid distance between the two centroids as follows.

If two clusters are combined, the center of the new cluster, , is calculated using the
weighted average as follows.

After calculating the distance between each cluster, a new cluster is formed with the data
with the closest centroid distance. Repeat this process until a single cluster includes all data.

Example 8.2.4 The five observed data for two variables  and  and the matrix of
squared Euclid distances between these data are as follows. Create a hierarchical
cluster using the single linkage method.

Table 8.2.10 Five observed data and the matrix of squared Euclid distances

Distance/th>

Data

(1, 5) 0

(2, 4) 2 0

(4, 6) 10 8 0

(4, 3) 13 5 9 0

(5, 3) 20 10 10 1 0

Answer

Gi ni ci Gj

nj cj d(Gi,Gj)

d(Gi,Gj) = ||ci − cj||
2

c

c =
nici + njcj

ni + nj

x1 x2

(x1,x2) A B C D E

A

B

C

D

E
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Since the distance between data  and  is 1, which is the minimum,  is the first
cluster, and the distance between cluster  and the remaining data is calculated
using the centroid linkage method, and the distance matrix is ​​modified as follows.

Table 8.2.11 Modified distance matrix with cluster  using the centroid linkage

Distance/th>

Cluster

0

2 0

10 8 0

16.25 7.25 9.25 0

Here, the minimum distance is  = 2, so  becomes the next cluster and the
center of the cluster is . If we calculate the distance between
clusters  and  ,  using the centroid linkage method and modify the distance
matrix, we get the following.

Table 8.2.12 Modified distance matrix with cluster  using the centroid
linkage

Distance/th>

Cluster

0

8.5 0

11.25 9.5 0

Here, the minimum distance is  = 8.5, so  becomes the next cluster
and the center of the cluster is as follows.

 = (2.3, 5)

If we calculate the distance between clusters  and  using the centroid
linkage method, we get the following.

 = 8.84

If the above centroid linkage method is displayed as a dendrogram as shown in <Figure
8.2.6>.

D E (DE)
(DE)

d((DE),A) = (4.5 − 1)2 + (3 − 5)2 = 16.25
d((DE),B) = (4.5 − 2)2 + (3 − 4)2 = 7.25

d((DE),C) = (4.5 − 4)2 + (3 − 6)2 = 9.25

(DE)

A B C (DE)

A

B

C

(DE)

d(A,B) (AB)
(4,3)+(5,3)

2 = (4.5, 3)

(AB) C (DE)

d((AB),C) = (1.5 − 4)2 + (4.5 − 6)2 = 8.5
d((AB), (DE)) = (1.5 − 4.5)2 + (4.5 − 3)2 = 11.25

(AB)

(AB) C (DE)

(AB)

C

(DE)

(d(AB),C)) (AB)C

2×(1.5, 4.5)+1×(4, 6)
2+1

(AB)C (DE)

d((AB)C, (DE)) = (2.3 − 4.5)2 + (5 − 3)2
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<Figure 8.2.6> Hierarchical clustering dendrogram using the centroid linkage

E. Ward linkage

The Ward linkage is a method of merging clusters based on the within-group sum of
squares rather than linking data based on the distance between clusters. Ward linkage
measures the information loss caused by grouping data into a single cluster at each stage of
clustering analysis by the cluster mean and the error sum of squares ( ) between the data.
If there are  clusters at the current stage in data with  variables and  data in each
cluster, the error sum of squares  of each cluster and  of the entire cluster are as
follows. Here,  is the measurement value for the -th variable of the -th data of cluster 
, and  means the mean value of variable  in cluster .

First, each data itself forms a cluster, then, since  for all i,  = 0. At each stage
of creating a cluster, the merging of all possible pairs of clusters is considered, and the
clusters are merged to create a new cluster so that the increment of  (information loss)
due to the merging of two clusters is minimized. The increment of  that occurs when
grouping two clusters  and , whose sizes are  and  respectively, is as follows, and
the Ward linkage method defines this increment as the distance between the two clusters 
and .

Here,  and  are the averages of two clusters  and  respectively. This result differs
from the centroid linkage method because the Ward linkage weights the distance between
clusters means when calculating the distance between clusters. The Ward linkage method
tends to merge clusters of similar size.

Example 8.2.5 The five observed data for two variables  and  and the matrix of
squared Euclid distances between these data are as follows. Create a hierarchical
cluster using the Ward linkage method.

ESS

K m ni

ESSi ESS

xijk i j Gi

xik =
∑

ni
j=1 xijk

ni

–k Gi

ESSi = ∑ni

j=1 ∑
m
k=1 (xijk − xik)2–

ESS = ∑K
i=1 ESSi = ∑K

i=1 ∑
ni

j=1 ∑
m
k=1 (xijk − xik)2–

ESSi ESS

ESS

ESS

Gi Gj ni nj

Gi

Gj

d(Gi,Gj) =
||ci − cj||

2

1
ni

+ 1
nj

ci cj Gi Gj

x1 x2
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Table 8.2.13 Five observed data and the matrix of squared Euclid distances

Distance/th>

Data

(1, 5) 0

(2, 4) 2 0

(4, 6) 10 8 0

(4, 3) 13 5 9 0

(5, 3) 20 10 10 1 0

Answer

When each data is considered as a cluster, the increment of ESS is the squared Euclid
distance. Since the distance between data D and E is 1, which is the minimum, (DE)

becomes the first cluster. The center of the cluster (DE) is  = (4.5, 3), so the
distance is calculated using the Ward linkage method for the remaining data, and the
distance matrix is ​​modified as follows.

Table 8.2.14 Modified distance matrix with cluster  using the Ward linkage

Distance/th>

Cluster

0

2 0

10 8 0

11.17 4.83 6.17 0

Here, the minimum distance is  = 2, so  becomes the next cluster and the

center of the cluster becomes  = (1.5, 4.5). If we calculate the distance
between clusters  and  ,  using the Ward linkage method and modify the
distance matrix, we get the following.

Table 8.2.15 Modified distance matrix with cluster  using the Ward
linkage

Distance/th>

(x1,x2) A B C D E

A

B

C

D

E

(4,3)+(5,3)
2

d((DE),A) =
(4.5−1)2+(3−5)2)

1
2 + 1

1

= 11.17

d((DE),B) =
(4.5−2)2+(3−4)2)

1
2 + 1

1

= 4.83

d((DE),C) =
(4.5−4)2+(3−6)2)

1
2

+ 1
1

= 6.17

(DE)

A B C (DE)

A

B

C

(DE)

d(A,B) (AB)
(1,5)+(2,4)

2
(AB) C (DE)

d((AB),C) =
(1.5−4)2+(4.5−6)2)

1
2 + 1

1

= 5.67

d((AB), (DE)) =
(1.5−4.5)2+(4.5−3)2)

1
2 + 1

1

= 11.25

(AB)

3/15/25, 2:55 AM Chapter 8

file:///D:/estat/eLearning/en/DataScience/chapter08.html 14/27



Cluster

0

5.67 0

11.25 6.17 0

Here, the minimum distance is  = 5.67, so  becomes the next cluster

and the center of the cluster becomes  = (2.3, 5). If we calculate the
distance between clusters  and  using the Ward linkage method, we get the
following.

If the above Ward linkage method is displayed as a dendrogram, it is as shown in
<Figure 8.2.7>.

<Figure 8.2.7> Hierarchical clustering dendrogram using the Ward linkage

Hierarchical clustering module of 『eStatU』 using the 27 iris data is as follows. You can
select clustering methods discussed in this section, but it is limited up to 100
observations.

[Hierarchical clustering\

(AB) C (DE)

(AB)

C

(DE)

(d(AB),C) (AB)C
2×(1.5,4.5)+1×(4,6)

2+1

(AB)C) DE

d((AB)C, (DE)) =
(2.3−4.5)2+(5−3)2)

1
3 + 1

2

= 10.61
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Menu  Hierarchical Clustering

  Variable Name   Data Input (Maximum number of observations = 100)
  X1 Sepal.Length 5.1,4.9,4.7,4.6,5.0, 5.4,4.6,5.0,4.4,4.9, 5.4,4.8,4.8,4.3,5.8, 5.7,5.4,5.1,5.7,5.1, 5.4,5

  X2 Sepal.Width 3.5,3.0,3.2,3.1,3.6, 3.9,3.4,3.4,2.9,3.1, 3.7,3.4,3.0,4.0,4.4, 3.9,3.5,3.8,3.8,3.4, 3.7,3

  X3 Petal.Length 1.4,1.4,1.3,1.5,1.4, 1.7,1.4,1.5,1.4,1.5, 1.5,1.6,1.4,1.1,1.2, 1.5,1.3,1.4,1.7,1.5, 1.7,1

  X4 Petal.Width 0.2,0.2,0.2,0.2,0.2, 0.4,0.3,0.2,0.2,0.1, 0.2,0.2,0.1,0.1,0.2, 0.4,0.4,0.3,0.3,0.3, 0.2,0

  X5
  X6

  Distance measure   (Euclid)2    Manhattan         Data standardization
  Linkage   Single     Complete     Avearage     Centroid     Ward   

Execute    Hierarchy Graph    Scatter Plot Matrix    Parallel Graph    Erase Data

  Graph Save      Table Save
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<Figure 8.2.8> Hierarchical clustering module in 『eStatU』

Characteristics of the hierarchical clustering model

The characteristics of the hierarchical clustering model are as follows.

1) The hierarchical clustering model is a method of finding a locally optimal cluster at each
stage, so it cannot be considered a general method of optimizing the entire objective
function.

2) Once a cluster is created, the hierarchical clustering model does not consider the
dissolution of the created cluster at all in the next stage. The results of the hierarchical
clustering model are used as the initial clusters of the -means clustering model in the
next section to test the stability of the results, etc.

3) When merging clusters in the average linkage method, centroid linkage method, and Ward
linkage method, the size of each cluster is weighted so that clusters with large sizes are
merged if possible.

8.2.2 R practice - Hierarchical clustering

You must install a package called stats to use Hierarchical clustering using R. From the
main menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN
mirror’ will appear. Here, select ‘0-Cloud [https]’ and click ‘OK’. Then, when the window
called ‘Packages’ appears, select ‘stats’ and click ‘OK’. dist() and hcluster() are used for the
hierarchical clustering, and general usage and key arguments of the functions are described
in the following table.

K
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Distance Matrix Computation
This function computes and returns the distance matrix computed by using the specified
distance measure to compute the distances between the rows of a data matrix.

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

x a numeric matrix, data frame or "dist" object.

method the distance measure to be used. This must be one of "euclidean", "maximum",
"manhattan", "canberra", "binary" or "minkowski".

diag logical value indicating whether the diagonal of the distance matrix should be printed by
print.dist.

upper logical value indicating whether the upper triangle of the distance matrix should be
printed by print.dist.

p The power of the Minkowski distance.

hclust
{stats}

Hierarchical Clustering
Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing
it.

hclust(d, method = "complete", members = NULL)

d a dissimilarity structure as produced by dist.

members NULL or a vector with length size of d.

An example of R commands for a Hierarchical clustering with 30 iris data is as follows.

> library(stats) copy r
command

> iris <- read.csv('iris30.csv', header=T, as.is=FALSE) copy r
command

> attach(iris) copy r
command

# select Sepal.Length, Sepal.Width, Petal.Length, Petal.Width from iris data
> iris4 <- iris[, c(2,3, 4, 5)]

copy r
command

# calculate distance matrix using squared Euclid distance
> dist(iris4, method = 'euclidean')

copy r
command

> hclustIris4 <-hclust(distIris4, method = "ward.D") copy r
command
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> hclustIris4

Call: hclust(d = distIris4, method = "ward.D")
Cluster method   : ward.D 
Distance         : euclidean 
Number of objects: 30  

copy r
command

# plot hierarchical clusters
> plot(hclustIris4)

<Figure 8.2.8> Hierarchical clustering dendrogram using R

copy r
command

8.3 -means clustering model
The -means clustering model is a prototype-based model, and if medians are used

instead of means, it is called -median clustering model. These models can be applied to
continuous data, and the mean and median of the data can be used as the centers of the
clusters, respectively. If there is no outlier, the -means clustering model is frequently used.
A similar concept can be applied to discrete data by defining the centroid of the discrete data.

The clustering model requires an appropriate distance measure between data and a
cluster. -means clustering model first determines the number of clusters  and selects the
initial center of each cluster. Then, each data is classified into a cluster with the closest
cluster center, and the center of each cluster is recalculated. We can use the various distance
measures studied in Chapter 2, and in the case of continuous data, the Euclidean distance is
generally used. This method is repeated until there is no change in the cluster center. The
basic procedure of the -means clustering model is summarized as follows.

-means clustering algorithm

Step 1 Determine the number of clusters  you want.

Step 2 Select the initial center of each cluster.

K

K

K

K

K K

K

K

K
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Step 3 repeat

Step 4 Classify each data into the cluster with the closest cluster center.

Step 5 Recalculate the center of each cluster.

Step 6 until (there is little change in the cluster center

Example 8.3.1 For the two variables  and , four data were observed as follows.
Find two clusters using the 2-means clustering algorithm with the squared Euclid
distance between the data.

Table 8.3.1 Data for the 2-means clustering algorithm

Data ( )

A (3, 4)

B (-1, 2)

C (-2, -3)

D (1, -2)

Answer

Let the center of cluster 1 be data A=(3,4) and the center of cluster 2 be data C=
(-2,-3). The distances from each data to the centers of the two clusters are as follows.

Table 8.3.2 Distance between data and the center of cluster

Data Cluster 1
Distance to center (3, 4)

Cluster 2
Distance to center (-2, -3)

A 0 74

B 20 26

C 74 0

D 40 10

Therefore, if each data is classified by the nearest cluster center, data A and B are
classified into cluster 1, data C and D are classified into cluster 2, and the center of
the new cluster 1 by the average is (1,3), and the center of cluster 2 is (-0.5,-2.5). The
distances from each data to the centers of the two new clusters are as follows.

Table 8.3.3 Modified distance between data and the center of cluster

Data Cluster 1
Distance to center (1, 3)

Cluster 2
Distance to center (-0.5, -2.5)

A 5 54.5

B 5 20.5

x1 x2

x1,x2
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C 45 2.5

D 25 2.5

If each data is classified by the nearest cluster center, data A and B are classified again
as cluster 1, and data C and D are classified as cluster 2, so the center of each cluster
does not change, so the algorithm is stopped. Finally, data A and B are classified as
cluster 1, and data C and D are classified as cluster 2.

Theoretical background of the -means clustering model

The hierarchical clustering model in Section 8.2 has a disadvantage: if data is assigned to
a specific cluster, it cannot be reassigned to another cluster. The -means clustering model,
on the other hand, can assign the data to a different group in the next clustering stage. Let's
look at the theoretical background of the -means clustering model.

Suppose there are  variables  and  number of data observed for
these variables. Let the  clusters be , the number of data observed in each
cluster be , and the mean of each cluster be  as follows.

If  is the distance between the center  of cluster  and the data , the measure of
cluster performance can be defined as the sum of distances from all data to each center.

When using the squared Euclid distance as a distance measure, the  that minimizes this
performance measure of clustering can be shown to be the mean of the cluster. Here, let us
prove that  is the cluster's mean when the data is only one-dimensional. The performance
measure of clustering is the following within sum of squares (WSS) in the case of the
squared Euclid distance.

In order to find  that minimizes this WSS, we take partial differentiation for each
, and set it to 0.

The solution to these simultaneous equations is as follows.

K

K

K

m x = (x1,x2, . . . ,xm) n

K G1,G2, . . . ,GK

n1,n2, . . . ,nK c1, c2, . . . , cK

ci =
1

ni

∑
x∈Gi

x

d(ci, x) ci Gi x

(Performance measure of clustering) =
K

∑
i=1

∑
x∈Gi

d(ci, x)

ci

ci

WSS =
K

∑
i=1

∑
x∈Gi

(ci − x)2

c1, c2, . . . , cK

ci, i = 1, 2, . . . ,K

∂

∂ci
SSE = ∑

x∈Gi

2(ci − x) = 0
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That is,  that minimize the SSE are each mean of the clusters.

If the data is one-dimensional and the absolute distance (Manhattan distance) is used as a
distance measure, the performance measure of clustering becomes the sum of absolute error
(SAE) as follows.

It can be shown that the solution  that minimizes this SAE are each median of the
clusters. In general, the median is known to be less sensitive to extreme points or outliers.

Determine the number of cluster

In general, it is not easy to determine the number of clusters in -means clustering
model. One method is first to examine the clustering results of the hierarchical clustering
model in Section 8.2 and then decide the number of clusters. Another useful way is to
analyze various  values ​​and then compare the within sum of squares. Selection of , which
has the minimum within sum of squares is reasonable. However, since the -means
clustering algorithm finds a solution that minimizes the within sum of squares, this algorithm
may find a local minimum rather than a global minimum. It is desirable to run the initial
center of each cluster as multiple data to prevent this problem and select a cluster with a
smaller WSS.

-means clustering module of 『eStatU』 provides a plot of the within sum of squares for
various  as follows. After selecting , you can do clustering analysis by checking 'fixed K'.

[ -means clustering]

ci =
1

ni

∑
x∈Gi

x

c1, c2, . . . , cK

SAE =
K

∑
i=1

∑
x∈Gi

|ci − x|

c1, c2, . . . , cK

K

K K

K

K

K K

K
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Menu  K-means Clustering

  Variable Name   Data Input
  X1 Sepal.Length 5.1,4.9,4.7,4.6,5,5.4,4.6,5,4.4,4.9,5.4,4.8,4.8,4.3,5.8,5.7,5.4,5.1,5.7,5.1,5.4,5.1,4.6

  X2 Sepal.Width 3.5,3,3.2,3.1,3.6,3.9,3.4,3.4,2.9,3.1,3.7,3.4,3,3,4,4.4,3.9,3.5,3.8,3.8,3.4,3.7,3.6,3.3

  X3 Petal.Length 1.4,1.4,1.3,1.5,1.4,1.7,1.4,1.5,1.4,1.5,1.5,1.6,1.4,1.1,1.2,1.5,1.3,1.4,1.7,1.5,1.7,1.5

  X4 Petal.Width 0.2,0.2,0.2,0.2,0.2,0.4,0.3,0.2,0.2,0.1,0.2,0.2,0.1,0.1,0.2,0.4,0.4,0.3,0.3,0.3,0.2,0.4

  X5
  X6

  number of clusters K  Find with ESS (2 ≤ K ≤ 9)    Fixed K= 3

 Data standardization     Distance measure   (Euclid)2    Manhattan
  max iteration  20     ESS difference bound ε = 0.0001    
  Execute      Scatter Plot Matrix      Parallel Graph       Erase Data

  Graph Save      K-means Cluster Table      Table Save
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<Figure 8.3.1> -means clustering in 『eStatU』

In general, extreme points or outliers can seriously affect the -means clustering model,
and we should try various distance measures. In other words, if there is an extreme point, the
average of that cluster is not suitable as a center measure for the cluster. You can remove
extreme points or outliers through exploratory data analysis to prevent this.

8.3.1 R practice - -means clustering

To use -means clustering using R, you need to install a package called stats. From the
main menu of R, select ‘Package’ => ‘Install package(s)’, and a window called ‘CRAN
mirror’ will appear. Select ‘0-Cloud [https]’ and click ‘OK’. Then, when the window called
‘Packages’ appears, select ‘stats’ and click ‘OK’. The following table describes the function's
general usage and key arguments.

-Means Clustering
Perform k-means clustering on a data matrix.

kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
"MacQueen"), trace = FALSE)

x numeric matrix of data, or an object that can be coerced to such a matrix (such as a
numeric vector or a data frame with all numeric columns).

centers either the number of clusters, say k, or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows in x is chosen as the initial centres.

test The data set for which we want to obtain the k-NN classification, i.e. the test set.

K

K

K

K

K
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iter.max the maximum number of iterations allowed.

nstart if centers is a number, how many random sets should be chosen?

An example of R commands for a -means clustering with iris data when k = 3 is as
follows.

> library(stats) copy r
command

> iris <- read.csv('iris150.csv', header=T, as.is=FALSE) copy r
command

> attach(iris) copy r
command

# select Sepal.Length, Sepal.Width, Petal.Length, Petal.Width from iris data
> iris4 <- iris[, c(2,3, 4, 5)]

copy r
command

> iriskmeans <- kmeans(iris4, centers = 3, iter.max = 1000) copy r
command

> iriskmeans

K-means clustering with 3 clusters of sizes 38, 62, 50
Cluster means:
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1     6.850000    3.073684     5.742105    2.071053
2     5.901613    2.748387     4.393548    1.433871
3     5.006000    3.428000     1.462000    0.246000
Clustering vector:
  [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3
 [38] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2
 [75] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 
1 1 1 1
[112] 1 1 2 2 1 1 1 1 2 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 
1 1 2 1
[149] 1 2

Within cluster sum of squares by cluster:
[1] 23.87947 39.82097 15.15100
 (between_SS / total_SS =  88.4 %)
Available components:
[1] "cluster"      "centers"      "totss"        "withinss"     "tot.wit
hinss"
[6] "betweenss"    "size"         "iter"         "ifault"   

copy r
command

K
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# the cluster vector only can be seen as follows.
1: verginica, 2: versicolor, 3: setosa
> iriskmeans$cluster

  [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3 3 3 3
 [38] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 2 2 2
 [75] 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 
1 1 1 1
[112] 1 1 2 2 1 1 1 1 2 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 
1 1 2 1
[149] 1 2

copy r
command

To make a classification cross table, you can use a vector of Species and
iriskmeans$cluster which is the cluster with table command as below. 'Setosa's are clustered
100% correctly, 'versicolor's are 48/50, but 'virginica's are 36/50.

# 1: verginica, 2: versicolor, 3: setosa
> classtable <- table(Species, iriskmeans$cluster)

Species       1  2  3
  setosa      0  0 50
  versicolor  2 48  0
  virginica  36 14  0

copy r
command

8.4 Exercise

8.1 The distance matrix for five data (A, B, C, D, E) is as follows.

Distance A B C D E

A 0

B 10 0

C 41 64 0

D 55 47 44 0

E 35 98 85 76 0

1) Create a hierarchical cluster using the single linkage method.
2) Create a hierarchical cluster using the complete linkage method.
3) Create a hierarchical cluster using the average linkage method.
4) Create a hierarchical cluster using the centroid linkage method.
5) Create a hierarchical cluster using the Ward linkage method.

8.2 The following six data were observed for two variables  and .X1 X2

3/15/25, 2:55 AM Chapter 8

file:///D:/estat/eLearning/en/DataScience/chapter08.html 26/27



Data

A 3 4

B -1 2

C -2 -3

D 1 -2

E 1 3

E -1 2

1) Calculate the distance between the data using the Euclidean square distance.
Create a hierarchical cluster using the single linkage method.

2) Create a hierarchical cluster using the complete linkage method.
3) Create a hierarchical cluster using the average linkage method.
4) Create a hierarchical cluster using the centroid linkage method.
5) Create a hierarchical cluster using the Ward linkage method.

8.3 Create clusters using the 2-mean clustering model. Use the mean as the central
measure in the data of Problem 2.

X1 X2
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