Chapter 1

Data science and Artificial Intelligence

Professor Jung Jin Lee Soongsil University, Korea New Uzbekistan University, Uzbekistan Chapter 1 Data science and Artificial Intelligence

1.1 Statistics, data science, machine learning, and artificial intelligence

- 1.2 General process of data analysis
- 1.3 Data classification
- 1.4 Software programs for data analysis

Statistics = 'State ' + 'istics'

••••

Descriptive Statistics

Inferential Statistics

Statistics Application

=> Predict sales, predict elections, test drugs, quality control

Big data => Data science

Data Science is a fusion of several science Collect big data, analyze and apply it in real life

- Probability
- Estimation
- Testing
- Sampling
- Multivariate Stat Anal
- Database
- Information Retrieval
- Distributed Computing
 - Artificial Intelligence
- Pattern Recognition

6

- Machine Learning
- Optimization
- MIS
- Marketing

Example of Data Science

 Google Flu Trend to estimate

Crude oil

exploration

INSURANCE

 Market basket analysis

 Car insurance fraud detection

Data mining

- Extract interesting (non-trivial, implicit, previously unknown and potentially useful) information or patterns using statistical and mathematical models.
 - Mining refers to extracting gold or minerals from mines.
 - Data mining implies extracting important patterns or knowledge from data.
- Knowledge extracted is used to make decisions.
- Similar terms:
 - Pattern analysis, knowledge discovery, knowledge extraction, data archeology, data dredging, business intelligence, etc.

Machine learning

- Computer automatically learns rules from data to create a software program that solves problems.
- Most of the techniques used in machine learning are similar to those used in data mining.
- Machine learning algorithms are often like a black box, making it difficult to know why decisions were made.

Artificial Intelligence (AI)

- Artificial intelligence is an extension of machine learning
- Machines that have intelligence to imitate human intelligence and perform complex tasks like humans.
- AI utilizes many techniques in data mining and machine learning, especially the artificial neural network model
- Deep learning is a simulation algorithm that trains the artificial neural network.

Artificial Intelligence (AI)

- In 1955, Marvin Minsky in US built the first neural network, the SNARC system. Viktor Glushkov in Soviet Union created the All-Union Automatic Information Processing System (OGAS).
- In 1974, Paul Warboss proposed a back-propagation algorithm that could solve a multilayer neural network.
 - visible results on character recognition, speech recognition
 - The algorithm sometimes failed to find a solution.
- In 2006, Geoffrey Hinton announced the **deep learning** algorithm
 - Surpassing result on artificial neural network. computer vision
 - Google DeepMind's AlphaGo popularized deep learning
- In 2022, generative AI.
 - OpenAI's ChatGPT and Drawing AI applied to personal hobbies and work applications and the practical application of AI

Potential Applications

- Decision support
 - Market analysis and management
 - target marketing, customer relation management, market basket analysis, cross selling, market segmentation
 - Risk analysis and management
 - Forecasting, customer retention, quality control, competitive analysis
 - Fraud detection and management
- Other Applications
 - Text mining (news group, email, documents) and Web analysis.
 - Intelligent query answering

Potential Applications

Finance planning and asset evaluation

- cash flow analysis and prediction
- contingent claim analysis to evaluate assets
- cross-sectional and time series analysis

Internet Web Surf-Aid

 Web access logs for market-related pages to discover customer preference and behavior pages, analyzing effectiveness of Web marketing, improving Web site organization, etc.

Astronomy

 JPL and the Palomar Observatory discovered 22 quasars with the help of data mining

Application to multimedia databases

Refining or combining searches

Search for "blue sky" (top layout grid is blue)

Search for "airplane in blue sky" (top layout grid is blue and keyword = "airplane")

Search for "blue sky and green meadows" (top layout grid is blue and bottom is green)

1.2 General process of data analysis

1.2 General process of data analysis

Knowledge discovery process

- Learning the application domain:
 - relevant prior knowledge and goals of application
- Creating a target data set: data selection
- Data cleaning and preprocessing: (take 60% of effort!)
- Data reduction and transformation:
 - Find useful features, dimensionality/variable reduction
- Choosing functions of data modeling
 - summarization, regression, classification, clustering
- Data mining: search for patterns of interest
- Pattern evaluation and knowledge presentation
 - visualization, transformation, removing redundant patterns
- Use of discovered knowledge

Data modelling functionalities (1)

Classification and Prediction

- Finding models (functions) that describe and distinguish classes or concepts for future prediction
- E.g., classify countries based on climate, or classify cars based on gas mileage
- Presentation: decision tree, classification rule, neural network
- Prediction: Predict some unknown or missing numerical values

Cluster analysis

- Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
- Clustering based on the principle: maximizing the intra-class similarity and minimizing the interclass similarity

Data modelling functionalities (2)

Outlier analysis

- Outlier: a data object that does not comply with the general behavior of the data
- It can be considered as noise or exception but is quite useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation: regression analysis
 - Sequential pattern mining, periodicity analysis
 - Similarity-based analysis
- Other pattern-directed or statistical analyses

Example of decision tree

Visualization

Table 1.3.1 Raw data by gender survey				
row	Gender			
1	male			
2	female			
3	male			
4	female			
5	male			
6	male			
7	male			
8	female			
9	female			
10	male			

Table 1.3.2 frequency table data for the gender

Gender	Number of Students			
Male	6			
Female	4			

1.3 Data classification

Notation of data

$oldsymbol{x}_1$		$bar{x_{11}}$	x_{12}		x_{1m}
$oldsymbol{x}_2$	_	x_{21}	x_{22}	•••	x_{2m}
			•••	•••	
$[\boldsymbol{x}_n]$		x_{n1}	x_{n2}		x_{nm}

$$\{(x_{i1}, x_{i2}, \dots, x_{im}), \; i=1,2,\dots,n\}$$

$$\{(x_{i1}, x_{i2}, \dots, x_{im}, y_i), \; i=1,2,\dots, n$$

}

1.4 Software for data analysis

- SAS and SPSS:
 - good but commercial, expensive
- R and Python: freeware
 - Need programming skill
- eStat: freeware
 - Educational, easy

Summary

- Data science:
 - discovering interesting patterns from large amounts of data
 - great demand, with wide applications
- Knowledge discovery process:
 - data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Data modeling functionalities:
 - characterization, discrimination, classification, clustering, outlier and trend analysis, etc.

