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5.1 Sampling distribution and estimation

Inferential statistics is used to find
out characteristics of unknown
populations.

Characteristics of a population
usually refers to the population
mean, variance, etc.,

Characteristic values of a
population are called parameters.

The parameters are estimated using
sample characteristics, such as a
sample mean and sample variance.
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5.1 Sampling distribution and estimation

¢ Central Limit Theorem(CLT)
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5.1 Sampling distribution and estimation

Central limit theorem

If a population has an infinite elements with a mean yt and variance o, then, if the sample size is large enough, the distribution of
all possible sample means is an approximately normal distribution N(u, <-). We can summarize specifically the central limit

theorem as follows.

) The average of all possible sample means, p-, 1s equal to the population mean .

(Le., py =i )
2) The variance of all possible sample means, ai_. is the population variance divided by n.

ol

(i.e..h D’QX =T )

3) The distribution of all possible sample means is approximately a normal distribution.

3

The above facts can be briefly written as X ~ N(g, UT)




5.1 Sampling distribution and estimation

A. Point estimation of population mean
- An observed value of the sample mean is a
point estimate of the population mean.

B. Interval estimation of population mean

100(1-a)% Confidence Interval for Population Mean u
-—- Population is normal and population variance ¢° is known




5.1 Sampling distribution and estimation

Population ~ N(0,1) (N=10000)
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Population Mean 95% Confidence Interval Simulation
n =20 r=100

Estimation Accuracy = 96% (96/




5.1 Sampling distribution and estimation

= 100(1-a)% Confidence Interval for Population Mean pu
—— Population is normal and population variance ¢° is unknown

S
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n is the sample size and S is the sample standard deviation.
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5.1 Sampling distribution and estimation

Example 5.1.2 Suppose we do not know the population variance in Example 4.4.2. If the sample size is 25 and the sample
standard deviation is 5 (unit: 10,000 KRW), estimate the mean of the starting salary of college graduates at the 95% confidence
level.

Answer

Since we do not know the population variance, we should use the £ distribution for interval estimation of the population mean.
Since tn_1: o/2 = t25-1: 0.05/2 = t25-1: 0,025 = 2.0639, the 95% confidence interval of the population mean is as follows.

S S
X-tp nl,.-"Q_/,—:X iy tep—

y n \ n
& [275 -2.0630(5/5), 275 +2.0639(5/5)]

& [272.9361, 277.0639)

Note that the smaller the sample size, the wider the interval width.




5.2 Testing hypothesis for a population mean

= Examples of testing hypothesis for a population
mean.

- Capacity of a cookie bag is indicated as 200g. Will
there be enough cookies in the indicated capacity?

- At a light bulb factory, a newly developed light
bulb advertises a longer bulb life than the past. Is
this propaganda reliable?

- In this year's academic test, students said that
there will be an average English score of 5 points
higher than last year. How can you investigate if
this is true?




5.2 Testing hypothesis for a population mean

[Example 5.2.1] At a light bulb factory, the average life
expectancy of a light bulb made by a conventional method
Is known to be 1,500 hours, and the standard deviation is
200 hours. The company introduced a new production
method with an average life expectancy of 1,600 hours.
To confirm this argument, 30 samples were taken, and the
sample mean was 1555 hours. Does the new type of light
bulb have a life of 1600 hours?
<Answer>
« Make two assumptions about the different arguments for
the population mean pu.
Hy: u=1500, H;: u = 1600
* H, is a null hypothesis and H; Is an alternative
hypothesis




5.2 Testing hypothesis for a population mean

« Unless there is a significant reason, eV p. : Population
keep the null hypothesis
= ‘conservative decision making’

' — Distribution
Ho: o= 150 (Hy: po= 1600

« Testing hypothesis is based on NN
sampling distribution of X. Distribution of
= Select a critical value C based on e Ganole Means
sampling distribution X=10 | X=160
= Decision rule:
‘If X < C, then accept H,, else reject H,’

lejection

Region Region
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5.2 Testing hypothesis for a population mean

Table 7.1.1 Two types of errors in testing hypothesis

Actual
H, is true H, is true

Decision: H, is true Correct Type 2 Error
H, is true Type 1 Error Correct

If we set the significance level is 5%, C can be calculated by

2
finding the percentile of N(1500, 223 )

C = 1500 + 1.645 /%’2 = 1560.06

Decision rule: ‘If X < 1560.06, then accept H, else reject H,’
Since X = 1555, it is less than 1560.06, accept H,,.




5.2 Testing hypothesis for a population mean

=

* p-value is the probability of a type 1 error when the
observed sample mean value is considered as the

critical value for decision

= p-value indicates where the observed sample mean
is located among all possible sample means

14



5,2 Testing hypothesis for a population mean

Table 5.2.2 Testing hypothesis for a population mean - unknown o case

Type of Hypothesis Decision Rule

1) Ho:p = po If Xt tn 1 o> thenreject Hy

Hl : J['E' :::} _p"-f’[] =

2) Ho:p=po If 2320 ~ ¢ .., then reject Hy

Hy:p < pg i
3) Ho:p= po

> tn1: o/2, then reject Hy
Hy :p# po

Note: Assume that the population is a normal distribution.
The Hy of 1) can be writtenas Hy: u < g, 2) as Hy : pu = pyg




5.2 Testing hypothesis for a population mean

Example 5.2.2 The weight of a bag of cookies is supposed to be 250 grams. Suppose the weight of all bags of cookies follows a
normal distribution. In the survey of 16 random samples of bags, the sample mean was 253 grams, and the sample standard
deviation was 10 grams. Test the hypothesis whether the weight of the bag of cookies is 250g or larger using a = 1% and find the

p-value. Use "eStatU; to test the hypothesis above.
Ho: = 250.00 , H: p > 250.00

Answer _ [TestStat] = (% - po) / (S / sqrt(n) ) ~ t(15) Distribution

Since the population standard deviation is unknown and the sample

X — o
5

'\_fﬁ
253 — 250 L T L
Tf ———— > t16: 0.01, then reject Hy else accept H[’) 5. 1753 <- Reject Ho
[TestStat] = 1.200

p-value = 0.1244
[Decision] Accept He

Since the value of test statistic is 257290 — 1.2, and t5. 901 = 2.602 , we accept H,. Note that the decision rule can be

Tt > ty_1. o, then reject Hy else accept H

written as follows.

Tf X > 250 + 2.602%, then reject Hy else accept H,
v




.3 Testing hypothesis for two population means

% Test statistic and sampling distribution

Table 5.3.1 Testing hypothesis of two populations means

Type of Hypothesis Decision Rule

tpy — po = Dy If w > tn,+ns—2: oy then reject Hy, else accept Hy

s p1 — pa > Do Vo ta

s 1 — pa = Dy If ["’;ﬂ_f“ < —tn,na-2; o, then reject Hy, else accept Hy

.

: p1 — w2 < Do Varts

11— p2 = Do (£1—22)D
s w1 — pe # Dy If |- =222 >t 40,-9: a/2, then reject Hy, else accept Hy

{85 &

Vaitw




.3 Testing hypothesis for two population means

Example 5.3.2 (Monthly wages by male and female)
Random samples of 10 male and female college graduates this year showed their monthly wages as follows. (Unit 10,000 KRW)

Male 272 255 278 282 296 312 356 296 302 312
Female 276 280 369 285 303 317 290 250 313 307
Ex = DataScience = WageByGender.csv.

Using “eStat;, answer the following questions.

1) If population variances are assumed to be the same, test the hypothesis at the 5% significance level of whether the average
monthly wage for males and females is the same.

2) If population variances are assumed to be different, test the hypothesis at the 5% significance level of whether the average
monthly wage for males and females is the same.

18



.3 Testing hypothesis for two population means

Ho: pi - p2=0.00, Hi: p1 - g2 #0.00
[TestStat] = (% - % - D) / ( pooled std * sqrt{1/ns+1/ns) ) ~ #(27) Distribution




.3 Testing hypothesis for two population means

(Group Gender) Income Confidence Interval Graph

n=10
S=31.74

File | EX080103_WageByGender.csv

Analysis Var by Group
v | [1: Gender

Or Falred Va

Gender | Incom

(Group Gender) Income Testing Hypothesis: Two Population M Testing

Hypothesis: Two Analysis Var Income Group Mame
Ho:pr- gz =D, Hu 1 - p2 # D, D = 0.00 Population Means

[TestStat] = (X1 - X2 - D) / (pooledStd * ¥(1/nx+1/nz)) ~ 1(18) Distribution

Population Mean
Statistics Observation 95% Confidence

Total

Missing Cbservations

ariance

FiprlliEes Assumption

Hi-Hz
Ho © b - b2 [TestStat] 95% Confidence
Interva

Reject Ho -> _5 101 2101 <- Reject He Difference of

Sample

m M M M M m M m m M

[TestStat] = 0218
p-value = 0.8302




5.4 Testing hypothesis for several population
means: ANOVA

= Examples to compare means of several populations.
Are average hours of library usage for each grade
the same?

Are yields of three different rice seeds equal?

In a chemical reaction, are response rates the
same at four different temperatures?

Are average monthly wages of college graduates
the same in three different cities?

= A factor is a variable that distinguishes populations,
such as grade or rice.




5.4 Testing hypothesis for several population
means: ANOVA

[Example 5.4.1] To compare the English proficiency of each grade at a
university, samples were randomly selected from each grade to take the

same English test.

m English Proficiency Score

817569 90 72 83
65 80 73 79 81 69
72 67 62 76 80

89 94 79 88

1) Using TeStats, draw a dot graph of exam scores for each grade and
compare average.

2) We want to test a hypothesis whether the average scores of each grade are
the same or not. Write a null hypothesis and an alternative hypothesis.

3) Apply the analysis of variances to test the hypothesis in question 2).

4) Use TeStats to check the results of the ANOVA test.

22



5.4 Testing hypothesis for several population

means. ANOVA

<Answer of Example 5.

(Group Grade) Score Confidence Interval Graph

1=8750

Probability Histogram and Normal Distribution

Std Dev=7.79

Mean=T450 Std Dev={

—
Mean=6750 ' 5td D
am OB MM SN N MR @R T T MmN N M e B8 A M7

Score

23



5.4 Testing hypothesis for several population
means: ANOVA

<Answer of Example 5.4.1>

2) Null hypothesis H,: uy =puy; = U3 = Uy
Alternative hpothesis H;: at least one pair of u; is not the same

3) Between sum of squares (SSB) or Treatment sum of squares (SSTr)

SSTr = 6(78.3 — ¥.)% + 6(74.5 — ¥.)? + 5(71.4 — y.)? + 4(87.5 — y.)? = 643.633
= If SSTr is close to zero, all sample means for four grades are similar.

Within sum of squares (SSW) or Error sum of squares (SSE)

SSE= (81 — #,.)* + (75 — y1.)*> + - + (83 — ¥1.)°
+ (65 — 72.)% + (80 — 7,.)% + - + (69 — ¥,.)*
+ (72 = §3.)% + (67 — y3.)* + - + (80 — y3.)*
+ (89 — ¥,.)% + (94 — J,.)% + -+ + (88 — ¥,.)% = 839.033




5.4 Testing hypothesis for several population
means: ANOVA

<Answer of Example 9.1.1>

SSTr
Treatment Mean Square (MSTr)

Error Mean Square (MSE)

FO - ﬁ - 4' 34‘7 F3’17;0_05 - 3 20
17
Hence Reject H,: uq1 =y, = U3 = Uy
ANOVA Table

Sum of Squares Degree Mean Squares F value
of freedom

Factor

Treatment | SSTr= 643.633 4-1 MSTr = 643.633/3 Fo = 4.347
Error SSE = 839.033 21-4 MSE = 839.033/17

SST =1482.666

25



means. ANOVA

<Answer of Example 5.4.1>

(Factor1 : Grade) Score Analysis of Variance

Hopi= 2= .= b
[TestStat] = (SSTr/(k-1)) / (SSE/(n-K)) ~ F(3,17) Distribution

Analysis of
Variance

<- Accept I-'ln - R ject Hn
0.000 3. 19?

Fo = 435, p-value = 0.0191
[Decision] Reject Ho

5.4 Testing hypothesis for several population

26



5.4 Testing hypothesis for several population
means: ANOVA

<Answer of Example 5.4.1>

Testing Hypothesis ANOVA

[Hypothesis] Hy,: U =u=..=U
H, : At least one pair of means is different
Test Type] F fest (ANOVA)
VI

sing BSV or sample statistics at the next boxes

Sample

wwne®
|

Execute |




5.4 Testing hypothesis for several population
means: ANOVA

Table 9.1.2 Notation of one-way ANOVA

Factor Observed values of sample Average

Level 1

Level 2

Level k

ANOVA Model

Yij = + &
=n+ a; + Si]’, i:1,2,...,k;j:1,2,...

Hypothesis

HO:al =y = =ak=0
H, : At least one pair of a; is not equal to 0

28



5.4 Testing hypothesis for several population

means. ANOVA

Factor

Treatment
Error

Total

Table 9.1.3 Analysis of variance table of one-way ANOVA

sum of Degree of Mean Squares F value
oguares freedom

SSTr k—1 MSTr = SSTr / (k—1) F, = MSTr/MSE
SoE 1 —k MSE = SSE / (n—k)
SST

(n=Yn,)
i=1

Total Sum of Squares SST = {"=12}1=i1(yij —Y.)?

Treatment Sum of Squares SSTr = {‘le]'.;"l(l_/,-. —-Y.)?

Error Sum of Squares SSE = {‘zlz;’z"l(Yij -Y;

SST = SSTr + SSE

If Fo > Fr_1n-k.a . then reject H,

PAS



5.5 Regression analysis

“*Correlation analysis

Population with (uy, uy) and (0%, %)

Random Sample

Population Covariance

Sample Covariance

Population Correlation p =

Sample Correlation

r =

(X1,Y1),(X2,Y2), ..., (X5, Y3)

oxy = Cov(X,Y) = E(X; —ux)(Y; — uy)

1 — —
Sxy = 7 2i=1 Xi = X)(¥; — Y)
D.¢%

Ox Oy

Sxy _ Yieq Xi—=X)(Y;-Y)

Sx S - o

30



5.5 Regression analysis

“*Correlation analysis

= Characteristics of p

1) p has a value between -1 and +1.
- closer to +1 = strong positive linear relation
- closer to -1 = strong negative linear relation.
- closer to 0 = weak linear relation

2) If all values of X and Y are located on a straight line, p is either +1
or -1.

3) p is only a measure of linear relationship between two variables.
- if p =0, there is no linear relationship between the two variables,
but there may be a different relationship

31



5.5 Regression analysis
“*Correlation analysis

32



5.5 Regression analysis

“*Correlation analysis

 Testing population correlation coefficient p

Null Hypothesis:
Test Statistic:

Rejection Region of H, :
1NVH;:p<0 Reject Hyif ty < -t, 5. 4
2YH;:p>0 Reject Hyif to > t, 5. 4
3)H;:p+#0 Reject Hy if |ty | > t,-2. o2

33



5.5 Regression analysis

“*Correlation analysis

[Example 5.5.1] Based on the survey of advertising costs and
sales for 10 companies that make the same product, we obtained

the following data. Test the hypothesis that the population
correlation coefficient is zero with the significance level 0.05.

Compan 12 3 4 5 67 8 9 10
pany

Advertise (X) 4 6 6 8 8 99101212
Sales (Y) 39 42 45 47 50 50 52 55 57 60

34



“*Correlation analysis

<Answer of Example 5.5.1>

‘ EX120101_SalesByAdvertise.csv

5.5 Regression analysis

Sales(y) : Advertise(x) Scatter Plot

Advertise

35



5.5 Regression analysis

“*Correlation analysis

=

<Answer of Example 5.5.1>
SXX =YY" (X; — X)?
= Y1 X —nX?
=766-10x 8.4% =60.4
SYY = Y1 ,(Y; — Y)?
= Y, ¥ —nY?
= 25097 - 10x 49.7% = 396.1
SXY =2iti(X; — X — )
= Y. X;Y;,— nXY
= 4326 — 10 X 8.4 X 49.7=151.2

O 0O NGO UL A WN =

-
o

n
c
3

151.2

1 1 = =
Sxy = —SXY=—2iL,(X; — X)(¥; - V)=~

Sxy_ _ Yie1 Xi—-X)(Y;-Y)
Sx Sy Jzz;l(xi _X)2 TR (¥; - T)2

T =

10-1

SXY 151.2

~ JSXX SXY  V60.4 x396.1

= 0.978




5.5 Regression analysis

“*Correlation analysis

<Answer of Example 5.5.1>

n—2 J% = JVi0—-2 =227 _1326
-Tr

t10-2:0.025 = 2.306
Hence H, : p = 0 isrejected

\V1-0.9782
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5.5 Regression analysis

“*Simple regression analysis

Regression analysis is a statistical method
- a mathematical model of relationships between variables,
- estimates model using measured values of the variables,

- uses estimated model to describe the relationship between
variables, or to apply it to the analysis such as forecasting.

Mathematical model = regression equation

A variable affected by other variables is called a dependent
variable. = response variable

Variables that affect dependent variable are called independent
variables. = explanatory variable




5.5 Regression analysis

“*Simple regression analysis

= Population regression model Y;,=a+ BX; + € ,i=1,2,..,n

Estimated regression equation Y;=a+ b X;
Residuals e; — Yl' = ?i

= Method of Least Squares

A method of estimating regression coefficients so that total sum
of the squared errors occurring in each observation is minimized.

Find « and B which minimize ", ¢? =Y, (Y;—a— B X;)?

» Least square estimator of a and B
p = Yiz1 Xi —X)(¥; - Y)
Z?=1(Xi - }_()Z
a=Y —bX




5.5 Regression analysis

“*Simple regression analysis

0 Goodness of Fit for Regression Line

= Residual standard error s is a measure of the extent to which
observations are scattered around the estimated line.

2 _ _1 v
s° = — ¥ (Y —Yy)?

The residual standard error s is defined as the square root of s2 .
= SST = SSE + SSR

SST=Y".,(Y; —-Y)>? df n-1

SSE=Y" (Y; -Y)? df n-2

SSR=%1,Y;-"* df 1




5.5 Regression analysis

“*Simple regression analysis

d Inference for the parameter g
2

(X X)Z)

b — Zl 1 (X X)(Y ) N(ﬂ

C (X; - X)?2
Jz \ (X -

 Confidence interval of g: b + t, 5.,/ X SE(b)

 Point estimate:

« Standard error of estimate b: SE(b) =

 Testing hypothesis:
Null hypothesis: Hy: B =P
b —Bo

Test statistic: t = SED)

1) Hy: B <Bo Reject Hyif t< -t, 5. 4
2) Hi: B> fo Reject Hyif t> t, ;. ,
3) Hy: B+ Bo Reject Hyif |t]| > t,_3 o2




5.5 Regression analysis

“*Simple regression analysis

d Inference for the parameter a
X2 52
S -%2 %)

 Point estimate: a=Y —bX ~N(a, (—

X2

- Standard error of estimate a: SE(a) =s \/% +

» Confidence interval of B: a *+ t,_5 4/ X SE(a)

« Testing hypothesis:
Null hypothesis: Hy: a = a

o . . _ a—ag
Test statistic: t = SR

1) Hy:a<ay Reject Hyif t < -t, 5. 4
2) Hi: a > ay Reject Hyif t> t, 5. ,
3)Hy: a +# ay Reject Hyif |[t| > t, 3. 412




5.5 Regression analysis
“*Simple regression analysis

O Inference for the average value puy, = a+ X,

A~

* Point estimate: Yo =a + bX,

: S . 7)o |1, (Xo—X)?
- Standard error of estimate Yy: SE(Y,) =s \/; + ?:12Xi_)_()2

* Confidence interval of Hy|x: Yo+ th—2; a2 X SE( 170)

Table 5.5.2 Analysis of variance table for simple linear regression

Source Sum of squares Degrees of freedom Mean Squares F value

: _ 55K _ MSR
Regression SSR MSR =23 Fo = 4158

Error SSE MSE = ;Sg

Total SST




5.5 Regression analysis

“*Simple regression analysis

[Example 5.5.2] In [Example 5.5.1], find

the least squares estimate of the slope

and intercept if the sales amount is a

dependent variable and the advertising

cost is an independent variable.

* Predict amount of sales when you have
spent on advertising by 10.

 Calculate the value of the residual
standard error and the coefficient of
determination in the data on advertising
costs and sales
Prepare an ANOVA table and test it
using the 5% significance level

Sales(y) : Advertise(x) Scatter Plot

! 2 for G




5.5 Regression analysis

“*Simple regression analysis

<Answer of Example 5.5.2>
b = Yicq Xi-X)(¥;-Y) _ 1512
T XL (G-X2 T 604

a=Y —bX =497 -2503 x84 =28.672
- Forecasting Y; = 28.672 + 2.503 X;

28.671 + 2.503 x 10 = 53.705

1
n-—2
17.622

= ooy = 2.203

= 2.503

(Y —Y)?

SSR 378429
SST  396.1

R* = = 0.956



5.5 Regression analysis

“*Simple regression analysis

122.346
36.663
36.663

1.100
1.100
2.114
2.114
15.658

mmm
| Average 84 49.7

1
2
3
4
5
6
7
8
9
10




5.5 Regression analysis

“*Simple regression analysis

1) Inference for 8
e b=2.50333

S

SE(b) = =
J2?=1<Xi _ %)

« Confidence interval of g: b + t,_ 3 42 XSE(b)
2.5033 + 3.833 x 0.1908 & (1.7720,3.2346)
« Test statisticfor Hy: p=0 H,:pB+0

Reject Hyif |t]| > t,_3. 42
_ b-By _ 25033-0 _
L= SE(b) 01908 13.22

Since tg. ¢025 = 3.833, H, is rejected.




5.5 Regression analysis

“*Simple regression analysis

2) Inference for a
e a=29.672

= 1
SE(a) = S - m = 1.484 10 604 = 1.670

« Test statisticfor Hy: a=0 H;: a+0

Reject Hyif |t| > t, 3 4/2

a-ag _ 29.672 -0
SE(a) 1.670

Since tg. g025 = 3.833, H, is rejected.
3) Confidence interval of py,: Yo+ ty 3 42 X SE( ¥y)
if x=8, Y, = 49.699, = 49.699 + 3.833 x 0.475

48



5.5 Regression analysis

“*Simple regression analysis

Sales(y) : Advertise(x) Scatter Plot

y = (28.67)+(2.50)x
r=098 2 = 096

49



5.5 Regression analysis

“*Simple regression analysis

= Residual analysis

Standardized Residual vs Forecasting Plot Standardized Residual Q-Q Plot

50



5.5 Regression analysis

“ Multiple regression analysis

= Population regression model

Yi zﬁo +ﬁ1X1 +ﬁ2X2 + - ++ﬁka +€i ,i = 1,2,...,7’l
Y=Xp+ €

(1 X711 X172 Xik|
1 Xy1 Xon Xog

_1 an an Xnk_




5.5 Regression analysis

“ Multiple regression analysis

= Least squares method

A method of estimating regression coefficients so that total sum
of the squared errors occurring in each observation is minimized.

Find a and p which minimize
=1 €% = &e= Y -XB)'Y-XB)

» Least Square Estimator of a and
b= XX)"1(XY)

= Residuals e; =Y - Y=Y -by+ b Xi1 + byXip + -+ + +b Xy,
Residual standard error s

1 —
S :\/n—k—l ?zl(yi _Yi)z




5.5 Regression analysis

“ Multiple regression analysis

= Analysis of Variance for Multiple Linear Regression

Sum of  Degrees of Mean Squares
Squares  Freedom

MSR

Regression MSR=SSR / k Fo=

Error MSE=SSE/ (n — k—1)

" Hy: p1=p= =p =0
H, : At least one of k number of ;s is not equal to 0

= Reject Hy if Fo > Fyp—-1.a

53



5.5 Regression analysis

“ Multiple regression analysis

A Inference for the parameter p;

« Point estimate: b;
« Standard error of estimate b;: SE(b;) = +/c;; s

« Confidence interval of b;: bi+ ty_k-1.a/2 X SE(b;)

+ Testing hypothesis:
Null hypothesis: Hy:B; = Bio
Test statistic: t = %ﬁ;‘)’
1 Hy: ;i <Py Reject Hyif t< -t, 1. 4
2) Hy: B> Lo Reject Hyif t> t, 1. 4
3) Hy: Bi# Bio Reject Hyif [t]| > t, _1; /2

54



5.5 Regression analysis

“ Multiple regression analysis

. Diameter(cm) Height(m) Volume( )
[Example 5.5.3] When logging trees B 10, 133 0201 |

in forest areas, it is necessary to 218 1981  0.291
investigate the amount of timber in 223 19.20  0.288
those areas. Since it is difficult to 266 2194  0.464

27.1 24.68 0.532
measure the volume of a tree 274 2529  0.557

directly, we can think of ways to 279 2011 0441

estimate the volume using the 279 2286 0515
diameter and height of a tree that 29.7  21.03  0.603
is relatively easy to measure. Draw 327 2255  0.628
a scatter plot matrix of this data Sy gel) Bl

. . 33.7 26.21 0.775
and c?n5|der a regression model 347 2164 0727
for this problem. 350 19.50 0.704

40.6 21.94 1.084




5.5 Regression analysis

“ Multiple regression analysis

<Answer of Example 5.5.3>

Scatter Plot Matrix

Parameter
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5.5 Regression analysis

“ Multiple regression analysis

[Example 5.5.4]

Standardized Residual vs Forecasting Plot Standardized Residual Q-Q Plot
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Summary

Sampling distribution and estimation:

> Central limit theorem
> Point and interval estimation for a population mean

Testing hypothesis for a population mean:
> Type 1 and 2 error, significance level, p-value
> Residual analysis

Testing hypothesis for two population means
Testing hypothesis for several population means

Regression analysis:
> Correlation analysis

> Simple linear regression and multiple linear regression
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Thank you !l
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