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8.1 Basic concept of unsupervised
machine learning and clustering

= Unsupervised learning classifies data whose group
affiliation is unknown into homogeneous groups.

=> (Clustering analysis

s Clustering analysis;
. understanding the data structure,
. identifying cluster characteristics
. determining the relationships between clusters,
. allowing for the performance of other analyses.



8.1 Basic concept of unsupervised
* machine learning and clustering

= Clustering analysis is based on the similarity and
relationship between data

s [he data in one cluster are similar, and the data in
other clusters are different.

= The definition of clusters is not easy.

= Not clear how many clusters to divide into.



8.1 Basic concept of unsupervised
machine learning and clustering

= Clustering models are divided into hierarchical and
partitional clustering models.

= The hierarchical clustering model allows subclusters

within a cluster
. All data is put into one cluster, divided into subclusters,
and then divided into subclusters again.

= [he partitional clustering model divides the entire data
without overlapping each other,
. K-means clustering model.



8.1 Basic concept of unsupervised
machine learning and clustering

s Clustering models are also divided into exclusive clustering,
where one data belongs to one cluster, and inclusive
clustering, where one data belongs to multiple clusters.

= The K-means clustering model is an exclusive clustering
analysis, and the fuzzy clustering model and the mixed
distribution clustering are inclusive clustering.

s Clustering models are also classified into prototype-based
models, density-based models, and graph-based models.



8.1 Basic concept of unsupervised
machine learning and clustering

s Factors for evaluating clustering models;
. Clustering tendency for a specific data set
. Number of accurate clusters
. Comparison of characteristics of formed clusters

= Evaluation measures for clustering;

Cohesion(G;) = Y d(z,y)
. Y« G."
Separation(G;, G ;) = \_‘ \_1 d(z,y)
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| 8.2 Hierarchical clustering model

s Agglomerative hierarchical clustering;

. Starts from one data, and groups the closest clusters in
order.

. Several variations depending on how the distance
between clusters is defined.
= Divisive hierarchical clustering;

. Considers all data as one cluster and divides them in
order so that the final cluster becomes one data.

. Several variations depending on which cluster is first
divided and how it is divided. <p>



$8.2 Hierarchical clustering model

= Resulting graphs of hierarchical clustering;

* Dendrogram *Subset plot




8.2 Hierarchical clustering model

s Agglomerative hierarchical clustering algorithm
Consider each data as one cluster and calculate the similarity matrix of all data.

repeat

Group the two closest clusters into one cluster.

Obtain the similarity matrix between all clusters including the newly formed cluster.

until (the number of clusters becomes one)
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< Single linkage or shortest distance

| 8.2 Hierarchical clustering model

n If the data with the closest distance in the distance
matrix D = {d;;} U and V, the two data are first

grouped to form a cluster (UV).

s The next step calculates the distance between the
cluster (UV) and the remaining (n-2) other data or

clusters.

= The single linkage distance between the cluster (UV)

and cluster W;
dyy = min(dyy , dyw)
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8.2 Hierarchical clustering model

% Single linkage or shortest distance

[Example 8.2.1] The five observed data for two variables x;and x, and
the matrix of squared Euclid distances between these data are as

follows. Create a hierarchical cluster using the single linkage method.

Table 8.2.1 Five observed data and the matrix of squared Euclid distances
Distance/th>

(&
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8.2 Hierarchical clustering model

<Answer of Example 8.2.1>
d((DE), A) = min(d(D, A), d(E, A)) = min(13,20) = 13

)
d((DFE), B) = min(d(D, B),d(E, B)) = min(5,10) =5
d((DE),C) = min(d(D,C),d(E,C)) = min(9,10) =9

Table 8.2.2 Modified distance matrix with cluster (DE) using the single linkage

Distance/th=

Cluster
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8.2 Hierarchical clustering model

<Answer of Example 8.2.1>

d((AB),C) = min(d(A, C),d(B,C)) = min(10,8) = 8
d((AB), (DE)) = min(d(A, (DE)),d(B, (DE)) = min(13,5) =5

Table 8.2.3 Modified distance matrix with cluster (AB) using the single
linkage
Distance/th>

Cluster C

(AB)

d((AB)(DE), C) = min(d((AB), C),d((DE), C)) = min(8,9) — 8



“ Complete linkage or maximum distance

| 8.2 Hierarchical clustering model

m If the data with the closest distance in the distance
matrix D = {d;;} U and V, the two data are first

grouped to form a cluster (UV).

s The next step calculates the distance between the
cluster (UV) and the remaining (n-2) other data or

clusters.

s The single linkage distance between the cluster (UV)
and cluster W;
dyy = max(dyw , dyw)
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8.2 Hierarchical clustering model

“ Complete linkage or maximum distance

[Example 8.2.1] The five observed data for two variables x;and x, and
the matrix of squared Euclid distances between these data are as
follows. Create a hierarchical cluster using the complete linkage

Table 8.2.1 Five observed data and the matrix of squared Euclid distances
Distance/th>

(&
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8.2 Hierarchical clustering model

<Answer of Example 8.2.2>
d((DE), A) = maxz(d(D, A),d(E, A)) = maz(13,20) = 20

d((DE), B) = maz(d(D, B),d(E, B)) = maxz(5,10) = 10
d((DE),C) = maz(d(D,C),d(E, C)) = maxz(9,10) = 10

Table 8.2.5 Modified distance matrix with cluster (DFE) using the complete linkage

Distance/th>
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8.2 Hierarchical clustering model

<Answer of Example 8.2.2>

d((AB), C) = maz(d(A, C),d(B, C)) = maz(10,8) = 10
d((AB), (DE)) = maz(d(A, (DE)), d(B, (DE)) = maz(20,10) = 20

Table 8.2.6 Modified distance matrix with cluster (AB) using the complete
linkage

Distance

d((AB), C(DE)) = maz(d((AB), C), d((AB), (DE))) = maz(10,20) = 20




8.2 Hierarchical clustering model

“ Average linkage

-

a If the data with the closest distance in the distance
matrix D = {d;;} U and V, the two data are first

grouped to form a cluster (UV).

s The next step calculates the average distance between
cluster (UV) and cluster W.

D, xz;c(UV) E x;cW d { &Liy &Ly )

I ]

d (UVYW =

T (UV) X Nw
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8.2 Hierarchical clustering model

“ Average linkage

[Example 8.2.3] The five observed data for two variables x;and x, and
the matrix of squared Euclid distances between these data are as

follows. Create a hierarchical cluster using the average linkage method.
Table 8.2.1 Five observed data and the matrix of squared Euclid distances
Distance/th>

¢
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8.2 Hierarchical clustering model

<Answer of Example 8.2.3>

Table 8.2.8 Modified distance matrix with cluster (DE) using the single linkage

Distance/th>
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8.2 Hierarchical clustering model

<Answer of Example 8.2.3>
d{(AB}EC‘T] _ d(A,C)+d(B,C) _ LEIS —9

2x1

d{(ﬂB} (DE)} _d A:D}-d(fl:E;;g(Bﬂ? +d(B,E) __ 134 2D4| 5410 _ 19

Table 8.2.9 Modified distance matrix with cluster (AB) using the average
linkage

Distance/th>

Cluster C
(AB)
C
(DE)

d(A,D)+d(A,E)+d(B,D)+d(B,E)+d(C.D)+d(C,E) __ 124204541049410 _ 11.1

ax2 i




8.2 Hierarchical clustering model

“ Centroid linkage

a If the data with the closest distance in the distance
matrix D = {d;;} U and V, the two data are first

grouped to form a cluster (UV).

s The distance between two clusters is defined as the
squared Euclid distance between the two centroids

d(Gi,Gj) = ||ei — ¢])?

s The center of the new cluster is the weighted average;
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8.2 Hierarchical clustering model

< Centroid linkage

[Example 8.2.4] The five observed data for two variables x;and x, and
the matrix of squared Euclid distances between these data are as

follows. Create a hierarchical cluster using the centroid linkage method.
Table 8.2.1 Five observed data and the matrix of squared Euclid distances
Distance/th>

¢
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8.2 Hierarchical clustering model

<Answer of Example 8.2.4>

d((DE),A) = (4.5-1)* +(3-5)* =
LI{EDE‘}*- B} = H'fl — _]}3 4 .[3 _ ,_1}3

Table 8.2.11 Modified distance matrix with cluster (DFE) using the centroid linkage

Distance/th=

Cluster
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8.2 Hierarchical clustering model

<Answer of Example 8.2.4>
d((AB),C) = (1.5 — 4)* + (4.5 — 6)> = 8.5
d((AB),(DE)) = (1.5 — 4.5)2 + (4.5 — 3)2 = 11.25

Table 8.2.12 Modified distance matrix with cluster (AB) using the centroid
linkage
Distance/th>

C

2% (1.5, 4.5)+1x(4, 6)

== = (2.3, 5)

(AB)C becomes the next cluster and the center of the cluster

d((AB)C, (DE)) = (2.3 — 4.5)> + (5 — 3)* = 8.84




8.2 Hierarchical clustering model
“ Ward linkage

s Ward linkage measures the information loss caused by

grouping data into a single cluster at each stage by
the error sum of squares (ESS).

o VTL m (o = 12
ESS; = E j=1 S k=1 (z ijk — Tik)

/ .-"‘ 1 F, ;K

s Clusters are merged to create a new cluster so that the
iIncrement of ESS due to the merging is minimized.

d(G;, Gy)
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8.2 Hierarchical clustering model
“ Ward linkage

[Example 8.2.5] The five observed data for two variables x;and x, and
the matrix of squared Euclid distances between these data are as

follows. Create a hierarchical cluster using the Ward linkage method.
Table 8.2.1 Five observed data and the matrix of squared Euclid distances
Distance/th>

¢
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8.2 Hierarchical clustering model

d((DE), B) = (45
d(DE),C) = 4s-413-9) _

Table 8.2.14 Modified distance matrix with cluster (DE) using the Ward linkage

Distance/th>

PAS



8.2 Hierarchical clustering model

<Answer of Example 8.2.5>
d((AB),C) = LA U0
d((AB), (DE)) = 4343 =
Table 8.2.15 Modified distance matrix with cluster ( AB) using the Ward
linkage
Distance/th>
Cluster C
(AB)

C

2% (1.5,4.5)+1x (4,6)
2+1

(AB)C becomes the next cluster = (2.3, 5)

d((AB)C, (DE)) = 2349463 _ 1061

5)
1
E




8.3 K-means clustering model

s K-means clustering is for continuous data, and the mean
and median can be used as the centers of the clusters,

= A similar concept can be applied to discrete data by
defining the centroid of the discrete data.

s The K-means clustering determines the number of clusters
K first and calculates the center of each cluster

am Classifies each data into a cluster with the closest cluster
center and recalculates the center of each cluster

s The same method is repeated until there is no change in
the cluster center.
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8.3 K-means clustering model

K-means clustering algorithm

Step 1 Determine the number of clusters K you want.

Step 2 Select the initial center of each cluster.

Step 3 repeat

Step 4 Classify each data into the cluster with the closest cluster center.
Step 5 Recalculate the center of each cluster.

Step 6 until (there is little change in the cluster center




8.3 K-means clustering model

[Example 8.3.1] For the two variables x;and x,, four data were observed
as follows. Find two clusters using the 2-means clustering algorithm
with the squared Euclid distance between the data.

Table 8.3.1 Data for the 2-means clustering algorithm

Data (1, x9)
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8.3 K-means clustering model

<Answer of Example 8.3.1>

Let the center of cluster 1 be data A=(3,4) and the center of cluster 2
be data C=(-2,-3). The distances from each data to the centers of the

two clusters are as follows.

Table 8.3.2 Distance between data and the center of cluster

Data Cluster 1 Cluster 2
Distance to center (3, 4) Distance to center (-2, -3)
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8.3 K-means clustering model

<Answer of Example 8.3.1>

If each data is classified by the nearest cluster center, data A and B are
classified into cluster 1, data C and D are classified into cluster 2, and
the center of the new cluster 1 by the average is (1,3), and the center of
cluster 2 is (-0.5,-2.5). The distances from each data to the centers of

the two new clusters are as follows.

Table 8.3.3 Modified distance between data and the center of cluster

Data Cluster 1 Cluster 2
Distance to center (1, 3) Distance to center (-0.5, -2.5)

5

5

45

25
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8.3 K-means clustering model

“ Theoretical background of K-means clustering

= A measure of clustering performance can be defined as
the sum of distances from all data to each center.

K
(Performance measure of clustering) = \ /_ d(e;, @)

s The performance measure of a clustering is the within sum
of squares (WSS) in the case of the Euclidean distance.
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8.3 K-means clustering model

% Theoretical background of K-means clustering

s The solution that minimizes the within sum of squares is
as follows.

s The solution that minimizes the within sum of squares is
the mean of clusters.
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Summary

Basic concept of clustering:

Classify data whose group is unknown into homogeneous groups.
Cohesion and separation are clustering measures.

Hierarchical clustering:
Agglomerative clustering starts from one data and groups the

closest clusters.
Single, complete, average, centroid, Ward linkage.

K-means clustering:

Determines the number of clusters K and selects the initial center
of each cluster.

Each data is classified into a cluster with the closest cluster center.
The center of each cluster is recalculated.
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Thank you !l
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