2. Visualization of Qualitative Data

In the case of categorical data, the following graphs are drawn and analyzed.

- bar graph
- pie graph
- rainbow graph
- band graph
- line graph

The data in the form of words are analyzed by drawing a word cloud.

2.1 Bar / Pie / Rainbow / Band Graph

| Think | The frequency table that surveyed 20 students in an elementary school
 class for their favorite sports is as follows:
 [Table 2.1] Frequency table for favorite sports |
| :--- | :--- | :--- |
| \qquadSports Number of students
 Soccer 8
 Basketball 4
 Baseball 5
 Volleyball 2
 Golf 1 | |
| | What are some graphs that can be easily observed what a favorite sport
 is like? |

- When you ask your students about their favorite sports, they say, 'soccer', 'basketball', 'baseball', ... You can get answers like this, which is called qualitative data. Most qualitative data are referred to as categorical data because their values represent categories. Qualitative data can be summarized as a frequency table by counting the number of students in each category, and examine their characteristics using a bar graph, a pie graph, a rainbow graph and a band graph.
- A bar graph shows the frequency of each category of data at the height of a rectangular bar. Spacing between the bars is used to emphasize that it is categorical data (<Figure 2.1 \rangle).

<Figure 2.1> Bar graph for favorite sports
- A pie graph is a graph in which the frequency of each category in the wholel data is divided into pie slices. For better comparison of proportions, draw the circle pieces in the order of the largest category in a clockwise direction.

<Figure 2.2> Pie graph for favorite sports
- A rainbow graph is a modified form of a pie graph and is a graph in which the frequency of each category is divided into raibow pieces and displayed in the total data.

<Figure 2.3> Rainbow graph for favorite sports
- A band graph is a modified form of a pie graph, and is a graph in which the frequency of each category is divided into rectangle pieces and displayed in the total data. It is also possible to sort in the order of the largest value of the category, but to distinguish it from the pie graph, the rectangle pieces are drawn in the order of the categories of the data in『eStatH』.

<Figure 2.4> Band graph for favorite sports

Practice 2.1	Using ${ }^{\mathrm{e}} \mathrm{e} \mathrm{StatH}_{』}$, draw a bar graph, pie graph, and band graph for favorite sports and observe which sports students like the most.
Solution	- If you select 'Bar Graph - Pie - Band Graph’ from the ${ }^{r} e S t a t H 』$ menu using the QR on the left, the data input window as shown in <Figure 2.5> appears. - Enter the desired title for 'Main Title', 'y title', and 'x title' and enter 'Category' and 'Frequency'. - Click the [Bar Graph] button to display a bar graph as in <Figure 2.1>. You can also draw the bar graph again by selecting the color of the desired category. If you select the icon for each category on the far right and check 'Emoji' under the graph, a bar graph like <Figure 2.6> appears.
	<Figure 2.5> Data input for favorite sports
	Favorite Sports <Figure 2.6> Bar graph with Imoji icons for each category

Practice 2.2	The fruits that elementary school students liked were as follows：
	［Table 2．2］Fruits that students liked
	Fruits \quad Number of students
	Strawberry 15
	Apple $\quad 10$
	Banana 25
	Grape 20
	Orange 10
	Tomato 2
	Watermelon 13
	Pineapple 5
	Let＇s draw a bar graph using 『eStatH」
Practice 2.2 Solution	－If you select＇Bar Graph－Pie Graph－Band Graph＇from the 『eStatH』 menu using the QR on the left，the data input window as shown in＜Figure 2．10＞appears． －Enter the desired title for＇Main Title＇，＇y title＇，and＇x title＇ and enter＇Category＇and＇Frequency＇．Select each fruit imoji icon on the far right． －Click the［Bar Graph］button and when the graph appears， check the＇Emoji＇below the graph．You can also draw the bar graph again by selecting the color of the desired category．
	$$
	2 Apple $\square 10 \square 0 \mathrm{O}$
	3 Banana $\square \square^{25} \square \square^{25}$
	4 Grape $\square \square \square^{20} \square$
	5 Orange \square 10 $\square \bigcirc$
	6 Tomato $\square \square \mathrm{V}^{2} \square \mathrm{O}^{\mathrm{r}}$
	7 Watermelon \square 13 $\square 0^{13}$
	8 Pineapple $\square 5$
	9
	Bar Graph Pie Graph Rainbow Graph Band Graph
	＜Figure 2．10＞Data input for favorite fruits

Exercise 2.1	According to the United Nations 2018 estimates, World largest 10 cities (mixture of city, metropolitan and urban area) are as follows: [Table 2.3] World largest 10 cities (mixture of city, metropolitan and urban area) Draw a bar graph, pie graph, rainbow graph and band graph using ${ }^{e} \mathrm{eStatH}$ 』 to find out the characteristics.	

Exercise 2.2	A summary of the survey of prospective jobs of elementary school students is as follows: [Table 2.4] Prospective jobs of elementary school students
	Job
	Movie star 45
	Doctor 30
	Teacher / Professor 60
	Lawyer 24
	Pro Gramer 10
	Sportsman 43
	Police $\quad 26$
	Use ${ }^{\text {eStatH }}$ 』 to draw a bar graph, a pie graph, rainbow graph and band graph to identify the characteristics.

2.2 Line Graph

- Data measured over time is often observed using a line graph. In a line graph, each data is displayed as a dot on the XY plane, with the time such as month or year as the X axis and the value of the other variable as the Y value, and then connected with a line. It is similar to a bar graph, but the change in data over time can be observed.
- Observing the line graph of Korea's population, it can be seen that it was increased from 1925 to 1944, and then decreased significantly in 1949 and 1954 due to the Pacific War and the Korean War. After that, the population continued to increase significantly during the baby boom period in the late 1950s, but the trend of increase became moderate after 1990, and this trend has become more gentle after 2015.

<Figure 2.12> Line graph of Korea's population

Practice 2.3	Using $\mathbb{r e S t a t H}_{\Perp}$, draw and observe a line graph for the Korean population in [Table 2.5].
Solution	- If you select 'Line Graph' from the ${ }^{\mathrm{r} e S t a t H 』 ~ m e n u ~ u s i n g ~}$ the QR on the left, a data input window as shown in <Figure 2.13> appears. - Enter the 'main title', ' y title', and ' x title' as shown in the figure, enter the number of population by year in 'Line 1 ', the variable name next to it, and year data in ' x '. - If you click the [Execute] button, a line graph as shown in <Figure 2.12> appears. You can also draw a line graph again by selecting the color of each line variable.
	<Figure 2.13> Data input for Line Graph

- When there are multiple variables observed at the same time, the line graph can draw multiple lines simultaneously on one graph.

Practice 2.4
Using $『_{e S t a t H 』 \text {, draw and observe the line graph for the }}$ average temperature of Spring, Summer, Fall, and Winter season in Korea such as in [Table 2.6] on one graph.
[Table 2.6] Average temperature of each season in Korea (unit: degree in Celsius)

Year	Spring	Summer	Fall	Winter
1973	11.6	24.5	12.9	-1.4
1974	10.8	22.4	13	-0.1
1975	11.2	23.9	15.5	0.3
1976	10.9	22.6	12.5	-1.7
1977	11.8	23.5	15	0.7
1978	11.7	24.7	14.3	2.2
1979	11.2	23.5	13.6	-0.2
1980	11	22.1	13.4	-2.3
1981	11.5	23.6	12.2	-0.1
1982	12	23.4	14.3	-0.2
1983	12.2	23.4	14.2	-2.1
1984	10.7	24.3	13.8	-0.6
1985	11.5	24.1	14.3	-2.1
1986	11.4	22.9	12.6	1.2
1987	11.1	23.2	14.1	0.3
1988	11	23.6	13.6	1.7
1989	12.3	22.9	13.7	1.4
1990	11.7	24.3	15.2	0.2
1991	11.4	23.4	13.5	1.7
1992	11.6	23.2	13.4	1.1
1993	11.1	21.7	13.8	0.5
1994	11.8	25.3	14.8	0.8
1995	11.1	23.7	13.4	-0.6
1996	10.6	23.5	14.1	0.5
1997	12.1	24	14	1.9
1998	13.4	23.1	15.4	1.6
1999	12.1	23.3	14.7	0.3
2000	11.6	24.2	13.7	0.3
2001	12.2	24.2	14.3	1.5
2002	12.7	23.1	12.5	0.9
2003	11.9	22.3	14.7	1.4
2004	12.2	24	14.7	0.5
2005	11.7	24.1	14.8	-0.1
2006	11.5	23.6	15.1	2.4
2007	12.1	23.8	14.5	0.7
2008	12.5	23.7	15.1	1.7
2009	12.6	23.3	14.7	0.5
2010	10.8	24.9	14.5	-0.7
2011	11	24	15.3	-0.4

Practice 2.4 Solution	- If you select 'Line Graph' from the ${ }^{\text {reStatH』 menu using }}$ the $Q R$ on the left, the data input window as shown in <Figure 2.14> appears. - Enter the 'main title', 'y title', and 'x title' as shown in the figure, and enter the Spring, Summer, Fall, and Winter temperatures from 'Line 1' to 'Line 4'.Enter each variable name as Spring, Summer, Fall, Winter, and enter year data in ' X '. - If you click the [Execute] button, a line graph as shown in <Figure 2.15> appears. You can also draw a line graph
	<Figure 2.14> Data input of average temperature by season for a line graph
	Average temperature by season in Korea <Figure 2.15> Line graph of average temperature by season in Korea - Looking at the line graph of the average temperature by season, it can be seen that the average temperature is gradually increasing, especially in Winter.

$\left.\begin{array}{|c|c|c|}\hline \text { Exercise 2．3 } & \begin{array}{l}\text { The following table shows the average life expectancy of } \\ \text { Koreans surveyed every 10 years from 1970 to 2020．Draw a } \\ \text { line graph using reStatH』 to find out the characteristics．}\end{array} \\ \text {［Table 2．7］Average life expectancy of Koreans }\end{array}\right\}$

Exercise 2.4	The table below shows the amount of imports and Korea from 2001 to 2020．Draw a line graph using to find out the characteristics． ［Table 2．8］Amount of imports and exports of Korea （unit：billion dollars）		
	2001	150.4	141.1
	2002	162.5	152.1
	2003	193.8	178.8
	2004	253.8	224.5
	2005	284.4	261.2
	2006	325.5	309.4
回涫回	2007	371.5	356.8
$3{ }^{2}+$	2008	422.0	435.3
	2009	363.5	323.1
	2010	466.4	425.2
回为䓪	2011	555.2	524.4
	2012	547.9	519.6
	2013	559.6	515.6
	2014	572.7	525.5
	2015	526.8	436.5
	2016	495.4	406.2
	2017	573.7	478.5
	2018	604.9	535.2
	2019	542.2	503.3
	2020	512.5	467.6

2.3 Word Cloud

[Table 2.9] Wikipedia's explanation of the 4th industrial revolution.	
	The following is Wikipedia's explanation of the 4th industrial revolution. The Fourth Industrial Revolution (4IR or Industry 4.0) is the ongoing automat ion of traditional manufactur ing and industrial practices, using modern smart technology. Large-scale machine-to-machine communication (M2M) and the internet of things (loT) are integrated for increased automation, improved communication and self-monitor ing, and product ion of smart machines that can analyze and diagnose issues without the need for human intervention.[1]
Explore	What words are important to explain the 4th industrial revolution?

- A word cloud is a visual representation of information in text data. The word cloud examines the frequency of all the words appearing in a given document, and displays the importance of the frequently appearing words with font size, inclination, or color. <Figure $2.16>$ is a word cloud for the explanation of the 4th industrial revolution above.

<Figure 2.16> Word cloud for Wikipedia's explation of the $4^{\text {th }}$ industrial revolution
- The word cloud is useful for quickly recognizing the most prominent words in a docmuent and determining their relative importance. It can be used, for example, to visualize important topics in a political speech, or as a tool to determine hyperlinks to items related to a single word in social media software. Key words in the word cloud are also used as marketing terms related to a particular website.
－There are many algorithms for a word cloud generation，and 『eStat』 adopts the algorithm of d 3 open software．d3 does not yet provide an accurate word cloud because there is no algorithm to remove unnecessary terms．Currently，the development of an algorithm that can display correlated words in a word cloud is in progress．

Practice 2.5	Draw and observe the word cloud for the 4th industrial revolution in［Table 2．9］using 『eStatH』．
Solution	－If you select＇Word Cloud＇from the 『eStatH』 menu using the QR on the left，a window for data input as shown in ＜Figure 2．17＞appears． －After copying the sentences in［Table 2．9］，click the ［Execute］button，and a word cloud as shown in＜Figure 2．16＞appears．
	＜Figure 2．17＞Data input for Word Cloud

Exercise 2.5	The following are excerpts from US President John F． Kennedy＇s inaugural address．Create a word cloud for this inaugural address and analyze the key words．
	［Table 2．11］Inaugral address of US President John F．Kennedy
	In the long history of the world，only a few generations have been granted the role of defending freedom in its hour of maximum danger．I do not shrink from this responsibility－－। welcome it．I do not believe that any of us would exchange places with any other people or any other generation．The energy，the faith，the devotion which we bring to this endeavor will light our country and all who serve it－－and the glow from that fire can truly light the world． And so，my fellow Americans：ask not what your country can do for you－－ask what you can do for your country． My fellow citizens of the world：ask not what America will do for you，but what together we can do for the freedom of man．

