Introduction to Statistics and Data Science using eStat

Chapter 5 Probability Distribution

5.1 Definition of Probability

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

- Similar events occur frequently or carried out around our lives.
- A machine is producing products repeatedly at a production plant.
 - => product is either a normal or a defective product, but not known what will be.
- We order pizza at home every Sunday.
 - => It usually takes about 30 minutes for a pizza to be delivered to the house, but exact time is not known.
- What these examples have in common.
 - ① Repetition of similar events.
 - **2** Various possible outcomes are known.
 - **③** There is no telling what exactly will happen.
 - => Statistical experiment

- Statistical experiment.
 - => Examples of statistical experiment?
 - => Examples of non-statistical experiment?
- Sample space : Set of all possible outcomes from a statistical experiment
 - => denoted by S, S = {normal, defective}
 - Discrete sample space: Number of elements in S is finite or countable
 - Continuous sample space: Number of elements in S is uncountable
- Event : A subset of the sample space
 - => denoted in English capitals A, B, and C ...
 - => A = {defective}

- Probability is 'representation of likelihood of an event ' between 0 and 1.
- If an event is likely to occur, the probability is close to 1.
 If it is unlikely to occur the probability is close to 0.
- Two definitions of probability,
 - classical definition
 - relative frequency definition

- Classical definition of probability
- Assume that all elements in the sample space are likely to occur equally.

The probability of an A will occur in case of discrete sample space is
 Number of elements belonging to event A

$$P(A) = \frac{\text{Number of elements belonging to event A}}{\text{Total number of elements in sample space}}$$

The probability of an A will occur in case of continuous sample space is

* Measurement can be length, area, volume etc.

[Ex 5.1.1] An office worker went on a business trip to a city and there are two restaurants (A and B) near his lodging.

- He threw a dice to count the number of points that appear on the top.
- If he had odd numbers, he would go to the restaurant A, if he had even numbers, he would go to the restaurant B.
- What is the probability that the restaurant A would be picked?

<Answer>

- Sample space is {1, 2, 3, 4, 5, 6}.
- The number of odd events is {1, 3, 5}, so there are three elements.
- Probability that restaurant A will be selected is 3/6 = 1/2.

[Ex 5.1.2] The time it takes for a pizza to be delivered to the house has the same possibility for any time from 10 to 30 minutes .

- What is the probability that a pizza delivery will be delivered between 20 and 25 minutes?

<Answer>

- Sample space is all values from 10 to 30 minutes {(10,30)}.
- Event where pizza is delivered between 20 and 25 minutes is { (20,25) }.
- Probability of this event is (25-20) / (30-10) = 0.25 by measuring distance.

- Relative frequency definition of probability
- Probability that event A will occur is the rate at which event A occurs when the experiments are conducted under the same conditions repeatedly.

- Law of Large Number
- If a coin is thrown many times, the probability of {Head} event converges to half

Thank you