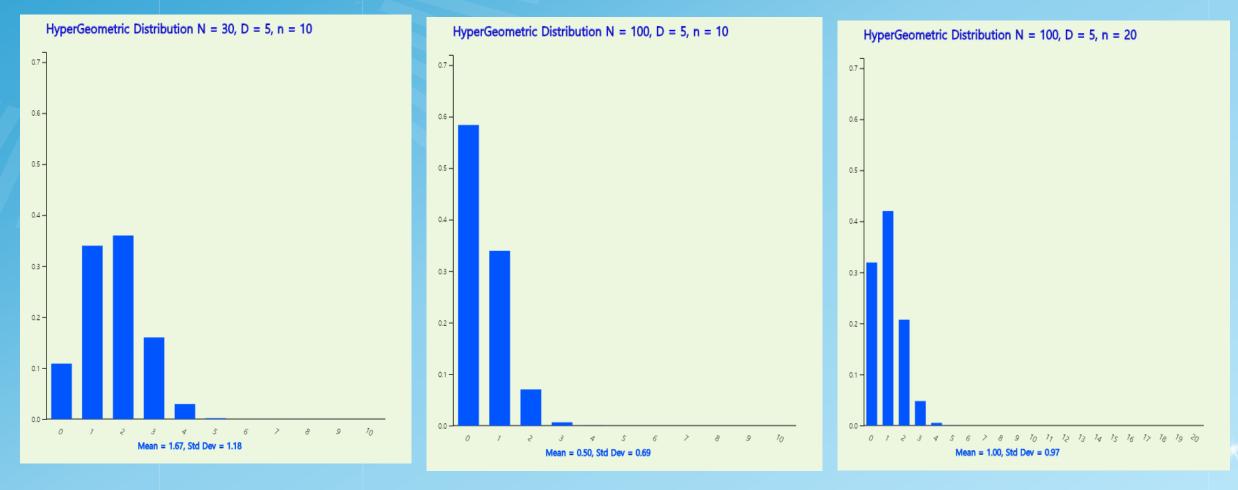
Introduction to Statistics and Data Science using *eStat* Chapter 5 Probability Distribution

5.3 Discrete Random Variable - Hypergeometric Distribution -

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

5.3.4 Hypergeometric Distribution


- Consider a box consisting of 20 products and 15 of them are normal products and 5 are defective products.
- When three of the 20 products are sampled, the probability of having one normal products and two defective product is $\frac{15^{C_1} \times 5^{C_2}}{20^{C_3}}$
- The random variable that counts the number of 'success' in the finite population consisting of only 'success' and 'failure' is called
 hypergeometric random variable
 - ⇒ hypergeometric distribution.

5.3.4 Hypergeometric Distribution

- Consider a population of size N which consists of D 'success' and N D 'failure'.
- If we collect a sample of size n without replacement and X is the number of 'success' in the sample, then the distribution of X is called hypergeometric distribution

$$f(x) = \frac{D^{C_{X}} \times N - D^{C_{n-x}}}{N^{C_{n}}}, x = 0, 1, ..., n$$

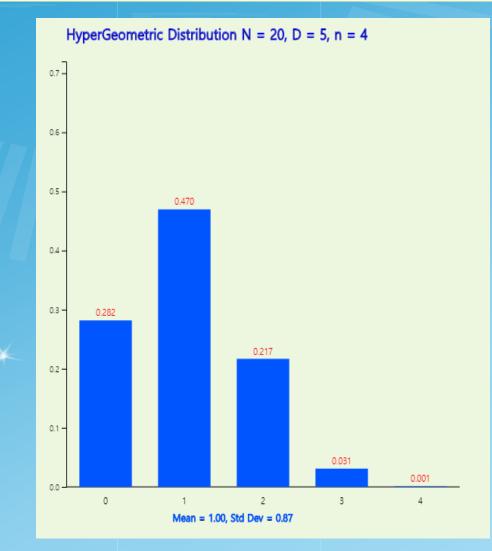
• If we let $p = \frac{D}{N}^{N^{C_{n}}}, E(X) = np, V(X) = np(1-p)\frac{N-n}{N-1}$

5.3.4 HyperGeometric Distribution

5.3.4 HyperGeometric Distribution

[Ex 5.3.12] Sample of size 3 is selected from a box containing 20 tobacco products of which there are 15 normal products and 5 defective products. What is the probability of having one, two, or three defectives in the sample?

<Answer>


 These probability calculations have already been learned using combinations in section 5.1. This is the hypergeometric distribution with N = 20, D = 15, n = 3, so it is as follows.

$$P(X=1) = \frac{{}_{15}C_2 \times {}_5C_1}{{}_{20}C_3} = \frac{15 \times 10}{1140} = 0.460$$

$$P(X=2) = \frac{{}_{15}C_1 \times {}_5C_2}{{}_{20}C_3} = \frac{105 \times 5}{1140} = 0.132$$

$$P(X=3) = \frac{{}_{15}C_0 \times {}_5C_3}{{}_{20}C_3} = \frac{455 \times 1}{1140} = 0.099$$

5.3.3 HyperGeometric Distribution

N = 20	D = 5	n = 3	
x	P(X = x)	P(X x)	Р(Х х)
0	0.3991	0.3991	1.0000
1	0.4605	0.8596	0.6009
2	0.1316	0.9912	0.1404
3	0.0088	1.0000	0.0088

Thank you