Introduction to Statistics and Data Science using *eStat* Chapter 5 Probability Distribution

5.4 Continuous Random Variable - Normal Distribution -

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

5.4.1 Normal Distribution

- Continuous data that appears more often in the form of a bell-shape
 ⇒ large collection of data near mean,
 fewer data as it moves away from the mean,
 symmetrical around the mean.
- This type of data is called a normal distribution.
 ⇒ height, weight, length of bolt
- Mathematicians tried to find a function to describe this distribution type. Abraham de Moivre (1667-1754) was first discovered the function Carl Friedrich Gauss (1777-1855) applied to physics and astronomy.

 inormal distribution function or a Gaussian function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \qquad -\infty < x < \infty$$

5.4.1 Normal Distribution

- Characteristics of the normal distribution.
- 1) continuous function in the shape of a bell.
- 2) symmetrical with respect to the mean μ . So the probability of the left and right sides of the mean is 0.5 each.
- 3) There are an infinite number of normal distributions according to μ and σ .

4) Probability of interval [μ - σ, μ+ σ] is 0.68, Probability of interval [μ - 2 σ, μ + 2 σ] is 0.95, Probability of interval [μ - 3 σ, μ + 3 σ] is 0.997.
⇒ most of the values around the interval of μ ± 3 σ few values outside of this interval

5.4.1 Normal Distribution – Probability Calculation

- Standardized Normal Random Variable
- If X is a normal random variable with the mean μ and variance σ^2 , i.e. X ~ $N(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

5.4.1 Normal Distribution – ^[]eStatU_]Probability Calculation

Normal Distribution																
Mean $\mu = 0$ Std Dev $\sigma = 1$ (If number is typed) Execute	정규 <mark>분</mark> 포	μ = 0	σ = 1.000													
N(0,1)	x	$P(X \le x)$	x	$P(X \le x)$	x	$P(X \le x)$	x	$P(X \le x)$	x	$P(X \le x)$	x	$P(X \le x)$	x	$P(X \le x)$	х	$P(X \le x)$
0.45 - 0.40 -	-3.99	0.0000	-2.99	0.0014	-1.99	0.0233	-0.99	0.1611	0.01	0.5040	1.01	0.8438	2.01	0.9778	3.01	0.9987
	-3.98	0.0000	-2.98	0.0014	-1.98	0.0239	-0.98	0.1635	0.02	0.5080	1.02	0.8461	2.02	0.9783	3.02	0.9987
0.35 -	-3.97	0.0000	-2.97	0.0015	-1.97	0.0244	-0.97	0.1660	0.03	0.5120	1.03	0.8485	2.03	0.9788	3.03	0.9988
0.30 - 0.25 - 0.20 - 0.15 - 0.10 -	-3.96	0.0000	-2.96	0.0015	-1.96	0.0250	-0.96	0.1685	0.04	0.5160	1.04	0.8508	2.04	0.9793	3.04	0.9988
	-3.95	0.0000	-2.95	0.0016	-1.95	0.0256	-0.95	0.1711	0.05	0.5199	1.05	0.8531	2.05	0.9798	3.05	0.9989
	-3.94	0.0000	-2.94	0.0016	-1.94	0.0262	-0.94	0.1736	0.06	0.5239	1.06	0.8554	2.06	0.9803	3.06	0.9989
	-3.93	0.0000	-2.93	0.0017	-1.93	0.0268	-0.93	0.1762	0.07	0.5279	1.07	0.8577	2.07	0.9808	3.07	0.9989
	-3.92	0.0000	-2.92	0.0018	-1.92	0.0274	-0.92	0.1788	0.08	0.5319	1.08	0.8599	2.08	0.9812	3.08	0.9990
0.05 - 0.6827	-3.91	0.0000	-2.91	0.0018	-1.91	0.0281	-0.91	0.1814	0.09	0.5359	1.09	0.8621	2.09	0.9817	3.09	0.9990
	-3.90	0.0000	-2.90	0.0019	-1.90	0.0287	-0.90	0.1841	0.10	0.5398	1.10	0.8643	2.10	0.9821	3.10	0.9990
-1.00 1.00	-3.89	0.0001	-2.89	0.0019	-1.89	0.0294	-0.89	0.1867	0.11	0.5438	1.11	0.8665	2.11	0.9826	3.11	0.9991
	-3.88	0.0001	-2.88	0.0020	-1.88	0.0301	-0.88	0.1894	0.12	0.5478	1.12	0.8686	2.12	0.9830	3.12	0.9991
	-3.87	0.0001	-2.87	0.0021	-1.87	0.0307	-0.87	0.1922	0.13	0.5517	1.13	0.8708	2.13	0.9834	3.13	0.9991
● P(1 < Z <1) = 0.6827	-3.86	0.0001	-2.86	0.0021	-1.86	0.0314	-0.86	0.1949	0.14	0.5557	1.14	0.8729	2.14	0.9838	3.14	0.9992
○ P(Z < 1.6449) = 0.95	-3.85	0.0001	-2.85	0.0022	-1.85	0.0322	-0.85	0.1977	0.15	0.5596	1.15	0.8749	2.15	0.9842	3.15	0.9992
0 1	-3.84	0.0001	-2.84	0.0023	-1.84	0.0329	-0.84	0.2005	0.16	0.5636	1.16	0.8770	2.16	0.9846	3.16	0.9992
○ P(-1.9600 < Z < 1.9600) = 0.95	-3.83	0.0001	-2.83	0.0023	-1.83	0.0336	-0.83	0.2033	0.17	0.5675	1.17	0.8790	2.17	0.9850	3.17	0.9992
0 Deference Site & Wilkingdia Welfram StatTrok KhanAcadamy	-3.82	0.0001	-2.82	0.0024	-1.82	0.0344	-0.82	0.2061	0.18	0.5714	1.18	0.8810	2.18	0.9854	3.18	0.9993
womann save reference site : <u>wikipedia</u> <u>womann</u> <u>stattrek</u> <u>MahAcademy</u>	-3.81	0.0001	-2.81	0.0025	-1.81	0.0351	-0.81	0.2090	0.19	0.5753	1.19	0.8830	2.19	0.9857	3.19	0.9993
Normal Distribution Table Percentile Table Table Save	-3.80	0.0001	-2.80	0.0026	-1.80	0.0359	-0.80	0.2119	0.20	0.5793	1.20	0.8849	2.20	0.9861	3.20	0.9993

[Ex 5.4.2] When Z is a standard normal random variable, obtain the following probability using the standard normality distribution table. Then use "eStatU...
1) P(Z < 1.96) 2) P(-1.96 < Z < 1.96) 3) P(Z > 1.96)

<Answer>

- 1) By using the standard normal distribution table, P(Z < 1.96) = 0.975.
- 2) P(-1.96 < Z < 1.96) = P(Z < 1.96) P(Z < -1.96) = 0.975 0.025 = 0.95
- 3) P(Z > 1.96) = 1 P(Z < 1.96) = 1 0.975 = 0.025
- By using the normal distribution module of ^reStatU₁,
- 1) enters the interval –4, 1.96 in the first of the options below the graph, then clicks the [Execute] button.

2) The answer is calculated by entering interval of 1.96 and 1.96,3) is calculated by entering interval of 1.96 and 4

[Example 5.4.3] When Z is a standard random variable, obtain x that satisfies the following formula. Then use *[eStatU]* to find this value x.

1)
$$P(Z < x) = 0.90$$
 2) $P(-x < Z < x) = 0.99$ 3) $P(Z > x) = 0.05$

<Answer>

P(

- 1) By using the standard normal distribution, the value of x is 1.2826
- 2) By using the standard normal distribution, the percentile of 0.995 is 2.575. .
- 3) By using the standard normal distribution, the value of x is 1.645.
- by using ^reStatU₁,
- 1) Enter p = 0.90 in the right box in the second option at the bottom of the graph screen, then clicks the [Execute] button.

● P(Z < <u>1.2816</u>) = 0.9000

1.6449

Ζ <

2) Enter p = 0.99 in the right box in the third option and click the [Execute] button.

0.9500

3) In the second option at the bottom of the graph screen, type p = 0.95 in the right box and click the [Execute] button.

5.4.1 Normal Distribution – Frequently used percentile

- Probability Calculation of Normal Random Variable
- If X is a normal random variable with the mean μ and variance σ^2 , i.e. X ~ $N(\mu, \sigma^2)$, then $P(\alpha < X < h) - P(\frac{\alpha - \mu}{\alpha} < \frac{X - \mu}{\alpha} < \frac{b - \mu}{\alpha})$

then
$$P(a < X < b) = P(\frac{a - \mu}{\sigma} < \frac{a - \mu}{\sigma} < \frac{s - \mu}{\sigma})$$

[Example 5.4.4] If the mid-term scores (X) of the Statistics course follows a normal distribution with an average of 70 points and a standard deviation of 10 test results X, calculate the following probabilities. Check the calculated value by using ^reStatU. Normal Distribution

1) P(X < 94.3) 2) P(X > 57.7) 3) P(57.7 < X < 94.3)

<Answer>

1)
$$P(X < 94.3) = P(\frac{X-70}{10} < \frac{94.3-70}{10}) = P(Z < 2.43) = 0.9925$$

2) $P(X > 57.7) = P(\frac{X-70}{10} > \frac{57.7-70}{10}) = P(Z > -1.23) = 0.8907$
3) $P(57.7 < X < 94.3) = P(\frac{57.7-70}{10} < \frac{X-70}{10} < \frac{94.3-70}{10}) = P(-1.23 < Z < 2.43) = 0.8832$

[Example 5.4.5] In [Example 5.4.4], obtain the following percentiles by using ^reStatU₁.

- 1) What is the 95% percentile of the mid-term test scores?
- 2) What is the 95% percentile of two sided of the mid-term scores?

<Answer>

- 1) The 95 percentile P(Z < ?) = 0.95 in N(0,1) is 1.645, so the percentile in the $N(70,10^2)$ is 70 + 1.645 × 10 = 86.45.
- 2) The 95 percentile of two-sided type P(? < Z < ?) = 0.95 in N(0,1), which can be calculated from P(Z < ?) = 0.975, is 1.96. So the two-sided 95% percentile interval is [70 1.96 × 10, 70 + 1.96 × 10], <u>I.e.</u>, [50.4, 89.6].
- To obtain a percentile for a general normal distribution using ^reStatU, enter the mean as 70 and the standard deviation as 10 on the screen in <Fig. 5.4.13>. 1) enters 0.95 in the second right box of options under the graph screen and press the [Execute] button to display the 95% percentile 86.4485.

5.4.1 Normal Distribution – Binomial probability calculation approximately

 In the case of large n in a binomial distribution, a direct probability calculation is not possible. In such cases, a normal distribution with an average of np and a variance of np (1-p) is used to calculate an approximated probability.

5.4.1 Normal Distribution – Binomial probability calculation approximately

[Example 5.4.6] The defect rate of products produced in a factory is 5 per cent. One day, a sample of 100 products is collected1) What is the probability that there are less than two defective products?2) What is the probability that there are defectives between 3 and 7?

<Answer>

X is a binomial distribution of n = 100, p = 0.05. The mean is np = 100 × 0.05 = 5, and the variance is np(1-p) = 100 × 0.05 x (1-0.05) = 4.75. The probability calculation using N(5, 4.75) is as follows.

1)
$$P(X \le 2) = P(Z \le \frac{(2-5)}{\sqrt{4.75}}) = P(Z \le -1.376) = 0.0845$$

2) $P(3 \le X \le 7) = P(\frac{(3-5)}{\sqrt{4.75}} \le Z \le \frac{(7-5)}{\sqrt{4.75}})$
 $= P(-0.918 \le Z \le 0.918) = 0.642$

Thank you