Introduction to Statistics and Data Science using *eStat* **Chapter 6 Sampling Distribution and Estimation** 6.4 Sampling Distribution of **Sample Proportions and Estimation** of Population Proportion

> Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

6.4.1 Sampling Distribution of Sample Proportions

[Example 6.4.1] Let's call 10 employees of a company a population. When the employees' satisfaction level with the company is investigated and the satisfaction is expressed as 1, the complaint is 0 as follows.

1011011001

That is, the population proportion p of the satisfaction is 0.6. Consider all possible samples of size 5 with replacement to obtain a sampling distribution of sample proportions.

[Answer of Ex 6.4.1]

Table 6.4.1 All possible sample cases			Table 6.4.2. Sampling Distribution of Sample Proportions			
Sample Case	Number of cases		Sample case	\hat{p}	Frequency	Relative Frequency
all unsatisfactory (0,0,0,0,0) 1 satisfactory (0,0,0,0,1) 2 satisfactory (0,0,0,1,1) 3 satisfactory (0,0,1,1,1) 4 satisfactory (0,1,1,1,1) 5 satisfactory (1,1,1,1,1)	${}_{5}C_{0} \times 4 \times 4 \times 4 \times 4 = 2$ ${}_{5}C_{1} \times 4 \times 4 \times 4 \times 4 \times 6 = 7$ ${}_{5}C_{2} \times 4 \times 4 \times 4 \times 6 \times 6 = 23$ ${}_{5}C_{3} \times 4 \times 4 \times 6 \times 6 \times 6 = 34$ ${}_{5}C_{4} \times 4 \times 6 \times 6 \times 6 \times 6 = 25$ ${}_{5}C_{5} \times 6 \times 6 \times 6 \times 6 \times 6 = 7$	1024 7680 3040 4560 5920 7776	all unsatisfactory 1 satisfactory 2 satisfactory 3 satisfactory 4 satisfactory 5 satisfactory	0.0 0.2 0.4 0.6 0.8 1.0	1024 7680 23040 34560 25920 7776	0.01024 0.07680 0.23040 0.34560 0.25920 0.07776
	계 100	0000		Tota	100000	1.0

6.4.1 Sampling Distribution of Sample Proportions

Sampling distribution of sample proportions

Assume the population is infinite and the population proportion is p. If \hat{p} is the sample proportion and the sample size n is large, the sampling distribution of all possible sample proportions is approximately a normal distribution with the mean p and variance p(1-p)/n.

$$\widehat{p} \sim N(p, \frac{p(1-p)}{n})$$

6.4.1 Sampling Distribution of Sample Proportions

[Ex 6.4.2] Let's say 3% of semiconductors made in a semiconductor factory are defective. When 300 samples were taken without replacement, the sample proportion for defective products was 2%. Find out where this sample rate is located among all possible sample proportions. What is the probability that the sample proportion is greater than 2%? <Answer>

Since the sampling distribution of the sample proportions is approximately normal distribution, $\hat{p} \sim N(0.03, \frac{0.03(1-03)}{300})$, the probability can be calculated as follows: Ρ

$$P(\hat{p} > 0.02) = P(Z > (0.02-0.03)/0.00985)$$

$$= P(Z > -1.02)$$

$$= 1 - P(Z \le -1.02)$$

Thank you