Introduction to Statistics and Data Science using *eStat* Chapter 6 Sampling Distribution and Estimation

6.5 Determination of Sample Size

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

6.5.1 Determination of Sample Size to Estimate Population Mean

100(1- α)% Confidence Interval for Population Mean – Known σ^2 - Assume a population is a normal distribution.

$$[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

margin of error $z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 0$ $\Rightarrow \mathbf{n} = (z_{\alpha/2} \frac{\sigma}{d})^2$

 $\widehat{\sigma} = \frac{max - min}{A}$

$$2\frac{\sigma}{\sqrt{n}} = d$$

6.5.1 Determination of Sample Size to Estimate Population Mean

[Ex 6.5.1] The standard deviation of the life of a light bulb produced at a plant is usually 100 hours. To estimate the average life of a bulb at a 95% confidence level, calculate the size of the sample to be within 20 hours of the error.

<Answer>

•
$$n = \left[\frac{z_{\alpha/2} \sigma}{d}\right]^2 = \left(\frac{1.96 \times 100}{20}\right)^2 = 9.8^2 = 96.04$$

Hence the sample size is 97 approximately.

6.5.2 **Determination of Sample Size to Estimate Population Proportion**

 100(1-α)% Confidence Interval for Population Proportion p -Assume a large sample.

$$[\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}]$$

• margin of error
$$z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = d$$

$$\Rightarrow$$
 n = $\widehat{p}(1-\widehat{p})(\frac{z_{\alpha/2}}{d})^2$

6.5.2 Determination of Sample Size to Estimate Population Proportion

[Ex 6.5.2] For this year's presidential election, a survey for estimating the 95% confidence interval of candidate's approval rating is conducted. Obtain the size of the sample to be within 2.5% of the error bound.

<Answer>

Since we do not have information on the population proportion, assume p̂ = 0.5. Then the sample size
n can be calculated as follows.

$$n = \hat{p}(1-\hat{p})(\frac{z_{\alpha/2}}{d})^2$$

$$n = 0.5(1-0.5)\frac{1.96^2}{0.025^2} = 1536.6$$

 Therefore, samples must be extracted with at least 1537 persons to limit the error bound to 2.5%. Various opinion polls conducted in Korea often show that the size of the sample is around 1,500 which implies that the margin of error does not exceed 3 percent.

Thank you