Introduction to Statistics and Data Science using *eStat* Chapter 7 Testing Hypothesis for Single Population

7.1 Testing Hypothesis for a Population Mean

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

- Examples of testing hypothesis for a population mean.
 - Capacity of a cookie bag is indicated as 200g. Will there be enough cookies in the indicated capacity?
 - At a light bulb factory, a newly developed light bulb advertises a longer bulb life than the past. Is this propaganda reliable?
 - In this year's academic test, students said that there will be an average English score of 5 points higher than last year. How can you investigate if this is true?
- Testing hypothesis is to decide which hypothesis is to use for the two hypotheses about the unknown population parameter using the sample.
 - test of population mean
 - test of population variance
 - test of population proportion

[Ex 7.1.1] At a light bulb factory, the average life expectancy of a light bulb made by a conventional production method is known to be 1,500 hours and the standard deviation is 200 hours.

- Recently, the company is trying to introduce a new production method, with the average life expectancy of 1,600 hours for light bulbs.
- To confirm this argument, 30 samples were taken by simple random sampling and the sample mean was 1555 hours. Can you tell me that the new type of light bulb has a life of 1600 hours?
 <Answer>
- A statistical approach to the question of this issue is first to make two assumptions about the different arguments for the population mean μ .

 $H_0: \mu = 1500, H_1: \mu = 1600$

• H_0 is called a null hypothesis and H_1 is an alternative hypothesis

<Ex 7.1.1 Answer>

- Null hypothesis : 'existing known fact', Alternative hypothesis : 'new facts or changes in current belief'.
 ⇒ 'unless there is a significant reason, we keep null hypothesis
 ⇒ 'conservative decision making'
- Common sense criterion to choose hypothesis
 ⇒ 'which population mean of two hypothesis is closer to sample mean'.
 ⇒ X
 = 1555 is closer to H₁ : μ = 1600 so H₁ will be chosen.
- Testing hypothesis is based on the sampling distribution of X.
 ⇒ select a critical value C based on the sampling distribution and make a decision rule:

'If \overline{X} is smaller than C, then accept H_0 will be chosen, else reject H_0 '

<Ex 7.1.1 Answer>

<Ex 7.1.1 Answer>

Table 7.1.1 Two types of errors in testing hypothesis

	Actual		
	H_0 is true	H_1 is true	
Decision: H_0 is true H_1 is true	Correct Type 1 Error	Type 2 Error Correct	

<Ex 7.1.1 Answer>

- If H_0 : μ = 1500 is true, sampling distribution of $\overline{X} \sim N(1500, \frac{200^2}{30})$.
- If H_1 : μ = 1600 is true, sampling distribution of $\overline{X} \sim N(1600, \frac{200^2}{30})$.
- Decision rule becomes as follows: 'If $\overline{X} < C$, then accept H_0 , else accept H_1 (i.e. reject H_0)'
- If we set the significance level is 5%, C can be calculated by finding the percentile of $N(1500, \frac{200^2}{30})$ C = 1500 + 1.645 $\sqrt{\frac{200^2}{30}}$ = 1560.06
- Decision rule can be written as follows: 'If $\overline{X} < 1560.06$, then accept H_0 , else reject H_0 '

<Ex 7.1.1 Answer>

• The decision rule is often written.

If
$$\frac{X - 1500}{\frac{200}{\sqrt{30}}}$$
 < 1.645, then accept H_0 , else reject H_0'

- Since $\overline{X} = 1555$, and $\frac{1555 1500}{\frac{200}{\sqrt{30}}} = 1.506$, it is less than 1.645. \Rightarrow accept H_0 .
- p-value is probability of type 1 error when the observed sample mean value is considered as the critical value for decision
 - ⇒ p-value indicates where the observed sample mean is located among all possible sample means

Table 7.1.2 Testing hypothesis for population mean - known σ case

Type of Hypothesis	Decision Rule		
1) H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$	If $\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{\alpha}$, then reject H_0		
2) H_0 : $\mu = \mu_0$ H_1 : $\mu < \mu_0$	If $\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} < -z_{\alpha}$, then reject H_0		
3) H_0 : $\mu = \mu_0$ H_1 : $\mu \neq \mu_0$	If $\left \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \right > z_{\alpha/2}$, then reject H_0		

Note: The H_0 of 1) can be written as H_0 : $\mu \leq \mu_0$, 2) as H_0 : $\mu \geq \mu_0$

9

• Decision rule using p-value 'If p-value is less than the significance level, then reject H_0 else accept H_0'

	Table 7.1.3 Calculation of p-value			
Type of Hypothesis	p-value			
1) H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$	$P(\overline{X} > \overline{x}_{obs})$			
2) H_0 : $\mu = \mu_0$ H_1 : $\mu < \mu_0$	$P(\overline{X} < \overline{x}_{obs})$			
3) H_0 : $\mu = \mu_0$ H_1 : $\mu \neq \mu_0$	$\textit{If $\overline{X}_{obs} > \mu_o$, $2P(\overline{X} > \overline{x}_{obs})$ else $2P(\overline{X} < \overline{X}_{obs})$}$			

Note : \overline{x}_{obs} is the observed sample mean.

Table 7.1.4 Testing hypothesis for population mean - unknown σ case (population is a normal distribution)

Type of Hypothesis	Decision Rule		
1) H_0 : μ = μ_0 H_1 : μ > μ_0	$If \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1;\alpha} , reject H_0$		
2) H_0 : $\mu = \mu_0$ H_1 : $\mu < \mu_0$	$If \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} < -t_{n-1;\alpha} , reject H_0$		
3) H_0 : $\mu = \mu_0$ H_1 : $\mu \neq \mu_0$	$\left I\! f \left \begin{array}{c} \overline{X} \ - \ \mu_0 \\ \hline \underline{S} \\ \overline{\sqrt{n}} \end{array} \right > t_{n-1;\alpha/2} \ , \ reject \ H_0 \\ \end{array} \right $		

Note: The H_0 of 1) can be written as H_0 : $\mu \leq \mu_0$, 2) as H_0 : $\mu \geq \mu_0$

[Example 7.1.2] The weight of a bag of cookies is supposed to be 250 grams.
Suppose the weight of all bags of cookies is a normal distribution.
In the survey of 100 samples of bags which were randomly selected, the

- sample mean was 253g and the standard deviation was 10 grams.
- 1) Test hypothesis whether the weight of the bag of cookies is 250g or larger and find the p-value. $\alpha = 1\%$
- 2) Test hypothesis whether or not the weight of the bag of cookies is 250g and find the p-value. $\alpha = 1\%$
- 3) Use **"eStatU** to test the hypothesis above.

<Answer of Example 7.1.2>

1) Hypothesis is $H_0: \mu = 250, H_1: \mu > 250.$

 Since sample size is large (n = 100), we can use Z distribution instead of t distribution. Decision rule is as follows:

'If
$$\frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} > z_{\alpha}$$
, then reject H_0 '
'If $\frac{253 - 250}{\frac{10}{\sqrt{100}}} > z_{\alpha}$, then reject H_0 '

Since (253-250) / (10/10) = 3 and $z_{0.01} = 2.326$, H_0 is rejected.

• Since p-value is the probability of Type 1 error when \overline{X} is critical value. the probability of P($\overline{X} > 253$).

$$\overline{X}$$
 is $N(250, \frac{100}{100})$ when $H_0: \mu = 250$ is true
p-value = P($\overline{X} > 253 \mid H_0$ is true) = P($Z > \frac{253-250}{\frac{10}{10}}$) = P($Z > 3$) = 0.0013

<Answer of Example 7.1.2>

- 2) Hypothesis is $H_0: \mu = 250, H_1: \mu \neq 250.$
- Since n is large, we can use the Z distribution instead of t distribution. Decision rule is as follows:

'If
$$\left|\frac{\bar{X}-\mu_{0}}{\frac{S}{\sqrt{n}}}\right| > z_{\frac{\alpha}{2}}$$
, then reject H_{0} '
'If $\left|\frac{253-250}{\frac{10}{\sqrt{100}}}\right| > z_{0.005}$, then reject H_{0} '
Since $\frac{253-250}{\frac{10}{10}} = 3$ and $z_{0.005} = 2.575$, H_{0} is rejected.

• p-value = 2 P(\overline{X} > 253) = P(Z > $\frac{255-250}{\frac{10}{10}}$) = 2 P(Z > 3) =0.0026

3) In[[]eStatU]menu, select 'Testing Hypothesis ', enter 250 at the box of on [Hypothesis] and select the alternative hypothesis as the right test.

- Check [Test Type] as Z test and check the significance level at 5%.
- At the [Sample Statistics], enter sample size 100, sample mean 253, and sample variance 100.

[Example 7.1.3] When sample size is 16 and sample variance is 100 in [Example 7.1.2], test whether the average weight of the cookie bags is 250g or greater and obtain the p-value. Check the result using **"eStatU**.

<Answer>

 Since the population standard deviation is unknown and the sample size is small, the decision rule is as follows:

'If
$$\frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1; \alpha}$$
, then reject H_0 '
'If $\frac{253 - 250}{\frac{10}{\sqrt{16}}} > t_{16-1;0.01}$, then reject H_0 '

Since (253-250) / $(\frac{10}{\sqrt{16}})$ = 1.2 and $t_{15;0.01}$ = 2.602, H_0 is accepted.

• Since p-value is probability that t_{15} ; is greater than the test statistics 1.200, p-value is 0.124 by using the module of t-distribution in \mathbb{C} eStatU₁.

Ho: $\mu = 250.00$, H1: $\mu > 250.00$

 $[TestStat] = (\bar{X} - \mu_0) / (S / sqrt(n)) \sim t(15) Distribution$

[Example 7.1.4] 10 male students are sampled in a university and examined their heights as follows:

172 175 178 182 176
180 169 185 173 177 (Unit cm)
[Ex] ⇒ eBook ⇒ EX070104_Height.csv.
Test the hypothesis whether the population mean is 175cm or greater with the significance level of 5%.

Confidence Interval GraphHistogramNormal Q-Q PlotNormality Test
$$H_o: \mu = \mu_o$$
175 $H_1: \mu \neq \mu_o$ $H_1: \mu > \mu_o$ $H_1: \mu < \mu_o$ Significance Level $\alpha = 0$ 5%1%Confidence Level 95% 99% \bullet t testZ test $\sigma =$ (if Z test, enter σ)t test(Z)Signed Rank Sum Test

Testing Hypothesis: Population Mean	Analysis Var	Height			
Statistics	Observation	Mean	Std Dev	std err	Population Mean 95% Confidence Interval
	10	176.700	4.809	1.521	(173.260, 180.140)
Missing Observations	0				
Hypothesis					
H ₀ :μ = μ ₀	μο	[TestStat]	t value	p-value	
H ₁ : μ ≠ μ ₀	175.00	sample mean	1.118	0.2925	

Thank you