Introduction to Statistics and Data Science using *eStat* Chapter 7 Testing Hypothesis for Single Population

7.2 Testing Hypothesis for a Population Variance

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

- Examples for testing hypothesis of population variances.
- Bolts of a company that currently supplies bolts to an automaker have an average diameter of 7mm and a variance of 0.25. Recently, rival companies have been applying for the supply, claiming that their companies' bolts have an average diameter of 7 millimeters and a variance of 0.16. How can I find out if this claim is true?
- The variance of math score of the last year's college scholastic aptitude test was 100. This year's math problem is said to be much easier than last year's. How can I find out if the variance of math score of this year test is smaller than last year?

Table 7.2.1 Testing hypothesis of population variance - population is normally distributed -

Type of Hypothesis	Decision Rule		
1) $H_0: \sigma^2 = \sigma_0^2:$ $H_1: \sigma^2 > \sigma_o^2:$	If $\frac{(n-1)S^2}{\sigma_0^2} > \chi^2_{n-1;\alpha}$, then reject H_0 , else accept H_0		
2) $H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_o^2$	If $\frac{(n-1)S^2}{\sigma_0^2} < \chi^2_{n-1;\alpha}$, then reject H_0 , else accept H_0		
3) $H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_o^2$	If $\frac{(n-1)S^2}{\sigma_0^2} > \chi^2_{n-1;\alpha/2}$ or $\frac{(n-1)S^2}{\sigma_0^2} < \chi^2_{n-1;1-\alpha/2}$, then reject H_0 , else accept H_0		

Note: In 1) the null hypothesis can be written as $H_0: \sigma^2 \leq \sigma_o^2$, in 2) $H_0: \sigma^2 \geq \sigma_o^2$.

[Example 7.2.1] One company produces bolts for an automobile. If the average diameter of bolts is 15mm and its variance is less than or equal to 0.10², it can be delivered to the automobile company.

- Twenty-five of the most recent products were randomly sampled and their variance was 0.15².
- Assuming that the diameter of a bolt follows a normal distribution,

 Conduct testing hypothesis at the 5% significance level to determine if the product can be delivered to the automotive company.
 Check the result using ^reStatU₁

(Answer of Ex 7.2.1)

1) Hypothesis is $H_0: \sigma^2 \le 0.1^2$, $H_1: \sigma^2 > 0.1^2$ and its decision rule is as follows:

'If
$$\frac{(n-1)S^2}{\sigma_0^2} > \chi^2_{n-1;\alpha}$$
, then reject H_0 '

 $S^2 = 0.15^2 = 0.0225,$

$$\frac{(n-1)S^2}{{\sigma_0}^2} = \frac{(25-1)\ 0.15^2}{0.10^2} = 54$$

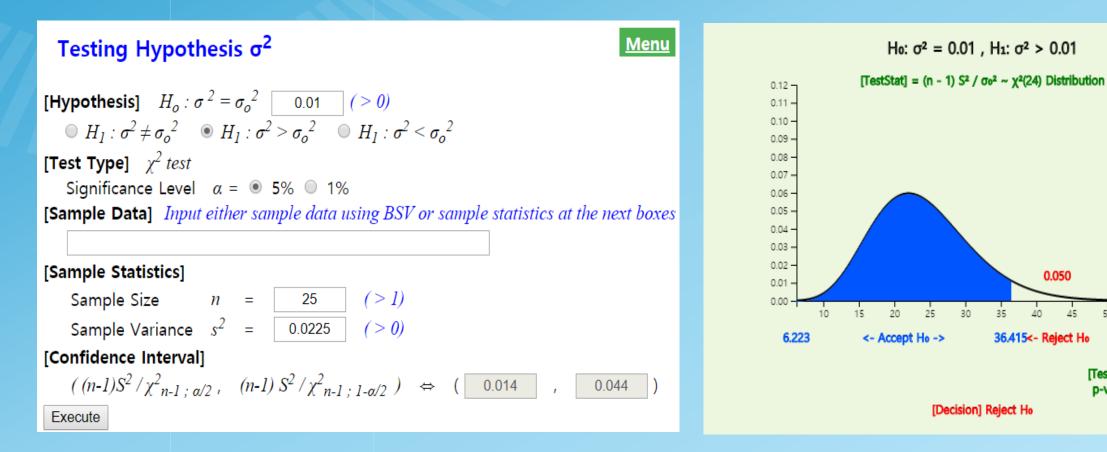
 $x_{n-1;\alpha}^2 = x_{25-1;0.05}^2 = 36.42.$ Therefore, H_0 is rejected.

2) Select 'Testing Hypothesis' in ^reStatU₁. Enter $\sigma_0^2 = 0.01$, select the right sided test and the 5% significance level in the input box. Then enter the sample size n = 25 and sample variance $s^2 = 0.15^2 = 0.0225$.

50

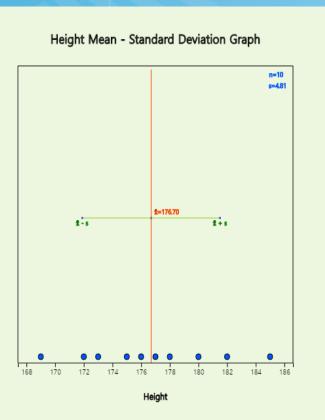
[TestStat] = 54.000

p-value = 0.0004



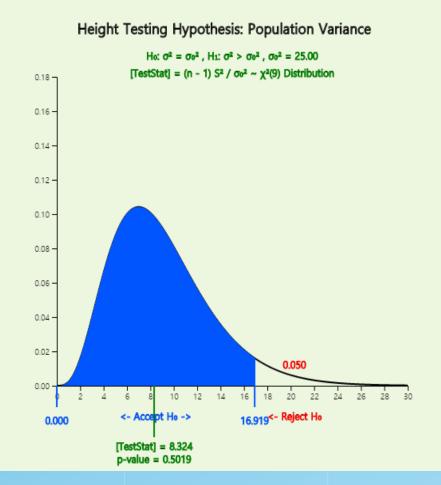
[Ex 7.2.2] By using the height data of 10 male college students in [Ex 7.1.4], 172 175 178 182 176 180 169 185 173 177, test the hypothesis whether the population variance is greater than 25 at a significant level of 5%.

File		Ex714Height.csv						
1: F (S	Analysis Var 1: Height (Selected data: Raw Data) (No SelectedVar V1							
	Height	V2	V3					
1	172							
2	175							
3	178							
4	182							
5	176							
6	180							
7	169							
8	185							
9	173							
10	177							



Confidence Interval Graph Histogram Normal Q-Q Plot Normality Test
$H_o: \sigma^2 = \sigma_o^2 \qquad 25 \qquad \bigcirc H_1: \sigma^2 \neq \sigma_o^2 \qquad \bigodot H_1: \sigma^2 > \sigma_o^2 \qquad \bigcirc H_1: \sigma^2 < \sigma_o^2$
Significance Level $\alpha = \odot$ 5% \bigcirc 1% Confidence Level \odot 95% \bigcirc 99% χ^2 test

〈Answer of Ex 7.2.2〉



Testing Hypothesis: Population Variance	Analysis Var	Height			
Statistics	Observation	Mean	Std Dev	std err	Population Variance 95% Confidence Interval
	10	176.700	4.809	1.521	(10.940, 77.063)
Missing Observations	0				
Hypothesis					
$H_0: \sigma^2 = {\sigma_0}^2$	σ ₀ ²	[TestStat]	ChiSq value	p-value	
$H_1: \sigma^2 > \sigma_0^2$	25.00	(n-1) S ² / σ ₀ ²	8.324	0.5019	

Thank you

2022년 12월 22일