Introduction to Statistics and Data Science using *eStat*

Chapter 9 Testing Hypothesis for Several Population Means

9.1 Analysis of Variance for Experiments of Single Factor

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan **9.1 Analysis of Variance for Experiments of Single Factor 9.1.1 Multiple Comparison 9.1.2 Residual Analysis**

9.2 Design of Experiments for Sampling 9.2.1 Completely Randomized Design 9.2.2 Randomized block design

9.3 Analysis of Variance for Experiments of Two Factors

▪ **Examples to compare means of several populations.**

- **Are average hours of library usage for each grade the same?**
- **Are yields of three different rice seeds equal?**
- **In a chemical reaction, are response rates the same at four different temperatures?**
- **Are average monthly wages of college graduates the same at three different cities?**
- **Factor is a variable used to distinguish populations, such as grade or rice.**

[Example 9.1.1] In order to compare the English proficiency of each grade at a university, samples were randomly selected from each grade to take the same English test, and the data are in Table 9.1.1.

- **1) Using 『eStat』, draw a dot graph of exam scores for each grade and compare average.**
- **2) We want to test a hypothesis whether the average scores of each grade are the same or not. Write a null hypothesis and an alternative hypothesis. 3) Apply the analysis of variances to test the hypothesis in question 2). 4) Use 『eStat』 to check the results of the ANOVA test.**

<Answer of Example 9.1.1>

(Group Grade) Score Confidence Interval Graph

Confidence Interval Graph Histogram

 $H_o: \mu_1 = \mu_2 = ... = \mu_k$ $H_1: At$ least one pair of means is different Significance Level $\alpha = \circledcirc$ 5% \circlearrowright 1% Confidence Level \circledcirc 95% \circledcirc 99% Standardized Residual Plot Kruskal-Wallis Test ANOVA F test

Probability Histogram and Normal Distribution

<Answer of Example 9.1.1>

- **2) Null hypothesis** $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ Alternative hypothesis $\|H_1:$ at least one pair of μ_i is not the same
- **3) Between sum of squares (SSB) or Treatment sum of squares (SSTr)** ⋯

SSTr = 6(78.3 – \bar{y} .)² + 6(74.5 – \bar{y} .)² + 5(71.4 – \bar{y} .)² + 4(87.5 – \bar{y} .)² = 643.633 \Rightarrow If SSTr is close to zero, all sample means for four grades are similar.

U

Within sum of squares (SSW) or Error sum of squares (SSE)

$$
SSE = (81 - \bar{y}_1)^2 + (75 - \bar{y}_1)^2 + \dots + (83 - \bar{y}_1)^2
$$

+
$$
(65 - \bar{y}_2)^2 + (80 - \bar{y}_2)^2 + \dots + (69 - \bar{y}_2)^2
$$

+
$$
(72 - \bar{y}_3)^2 + (67 - \bar{y}_3)^2 + \dots + (80 - \bar{y}_3)^2
$$

+
$$
(89 - \bar{y}_4)^2 + (94 - \bar{y}_4)^2 + \dots + (88 - \bar{y}_4)^2 = 839.033
$$

 \sim $F_{3,17}$

<Answer of Example 9.1.1> CCT

 $0.49.02$

$$
F_0 = \frac{\frac{SSTr}{(4-1)}}{\frac{SSE}{(21-4)}} = \frac{Treatment Mean Square (MSTr)}{Error Mean Square (MSE)}
$$

$$
F_0 = \frac{\frac{643.633}{3}}{\frac{839.033}{17}} = 4.347 \qquad F_{3,17;0.05} = 3.20
$$

• Hence Reject
$$
H_o
$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

• **ANOVA Table**

7

<Answer of Example 9.1.1>

anarysis or **Variance**

Menu

<Answer of Example 9.1.1>

Testing Hypothesis ANOVA

[Hypothesis] $H_0: \mu_1 = \mu_2 = ... = \mu_k$

 H_1 : At least one pair of means is different

[Test Type] F test (ANOVA)

Significance Level $\alpha = \bullet$ 5% \circ 1%

[Sample Data] Input either sample data using BSV or sample statistics at the next boxes

Table 9.1.2 Notation of one-way ANOVA

Factor	Observed values of sample				Average
Level	Y_{11}	Y_{12}	\cdots	Y_{1n_1}	
Level 2	Y_{21}	$Y^{}_{22}$	\cdots	Y_{2n_2}	Y_{2} .
Level κ	Y_{k1}	Y_{k2}	\cdots	$Y^{}_{kn_k}$	\overline{k} .

▪ **ANOVA Model**

$$
Y_{ij} = \mu_i + \varepsilon_{ij}
$$

= $\mu + \alpha_i + \varepsilon_{ij}$, $i = 1, 2, ..., k$; $j = 1, 2, ..., n_i$

▪ **Hypothesis**

$$
H_0: \alpha_1 = \alpha_2 = \dots = \alpha_k = 0
$$

H₁: At least one pair of α_i is not equal to 0

■ **If** F_0 > $F_{k-1,n-k;\alpha}$, then reject H_0

Thank you