Introduction to Statistics and Data Science using eStat

Chapter 9 Testing Hypothesis for Several Population Means

9.1 Analysis of Variance for Experiments of Single Factor

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan 9.1 Analysis of Variance for Experiments of Single Factor 9.1.1 Multiple Comparison 9.1.2 Residual Analysis

9.2 Design of Experiments for Sampling 9.2.1 Completely Randomized Design 9.2.2 Randomized block design

9.3 Analysis of Variance for Experiments of Two Factors

Examples to compare means of several populations.

- Are average hours of library usage for each grade the same?
- Are yields of three different rice seeds equal?
- In a chemical reaction, are response rates the same at four different temperatures?
- Are average monthly wages of college graduates the same at three different cities?
- Factor is a variable used to distinguish populations, such as grade or rice.

[Example 9.1.1] In order to compare the English proficiency of each grade at a university, samples were randomly selected from each grade to take the same English test, and the data are in Table 9.1.1.

Grade	English Proficiency Score	Average
1	81 75 69 90 72 83	$\overline{y}_{1.} = 78.3$
2	65 80 73 79 81 69	$\overline{y}_{2.} = 74.5$
3	72 67 62 76 80	$\overline{y}_{3.} = 71.4$
4	89 94 79 88	$\overline{y}_{4.} = 87.5$

- 1) Using "eStat, draw a dot graph of exam scores for each grade and compare average.
- We want to test a hypothesis whether the average scores of each grade are the same or not. Write a null hypothesis and an alternative hypothesis.
 Apply the analysis of variances to test the hypothesis in question 2).
 Use [[]eStat] to check the results of the ANOVA test.

<Answer of Example 9.1.1>

File		Ex911EnglishScoreByGrade.csv							
Analysis Var by Group									
2: Score • 1: Grade									
(Selected data: Raw Data) (Select up to two groups)									
SelectedVar V2 by V1,									
	Grade		Score	V3	V4	ν			
1		1	81						
2		1	75						
3		1	69						
4		1	90						
5		1	72						
6		1	83						
7		2	65						
8		2	80						
9		2	73						
10		2	79						
11		2	81						
12		2	69						
13		3	72						
14		3	67						
15		3	62						
16		3	76						
17		3	80						
18		4	89						
19		4	94						
20		4	79						
21		4	88						

(Group Grade) Score Confidence Interval Graph

Confidence Interval Graph Histogram

 $\begin{array}{ll} H_{o}: \mu_{1} = \mu_{2} = ... = \mu_{k} & H_{1}: At \ least \ one \ pair \ of \ means \ is \ different \\ \hline Significance \ Level \ \alpha = \odot 5\% \ O \ 1\% & Confidence \ Level \ \odot \ 95\% \ O \ 99\% \\ \hline \ ANOVA \ F \ test & Standardized \ Residual \ Plot & Kruskal-Wallis \ Test \\ \end{array}$

Probability Histogram and Normal Distribution

<Answer of Example 9.1.1>

- 2) Null hypothesis $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ Alternative hypothesis $H_1: at \ least \ one \ pair \ of \ \mu_i \ is \ not \ the \ same$
- 3) Between sum of squares (SSB) or Treatment sum of squares (SSTr)

SSTr = $6(78.3 - \bar{y}_{...})^2 + 6(74.5 - \bar{y}_{...})^2 + 5(71.4 - \bar{y}_{...})^2 + 4(87.5 - \bar{y}_{...})^2 = 643.633$ \Rightarrow If SSTr is close to zero, all sample means for four grades are similar.

Within sum of squares (SSW) or Error sum of squares (SSE)

SSE =
$$(81 - \bar{y}_{1.})^{2} + (75 - \bar{y}_{1.})^{2} + \dots + (83 - \bar{y}_{1.})^{2}$$

+ $(65 - \bar{y}_{2.})^{2} + (80 - \bar{y}_{2.})^{2} + \dots + (69 - \bar{y}_{2.})^{2}$
+ $(72 - \bar{y}_{3.})^{2} + (67 - \bar{y}_{3.})^{2} + \dots + (80 - \bar{y}_{3.})^{2}$
+ $(89 - \bar{y}_{4.})^{2} + (94 - \bar{y}_{4.})^{2} + \dots + (88 - \bar{y}_{4.})^{2} = 839.033$

*F*_{3,17}

 \sim

<Answer of Example 9.1.1>

CCT~

$$= \frac{\frac{3517}{(4-1)}}{\frac{55E}{(21-4)}} = \frac{Treatment Mean Square (MSTr)}{Error Mean Square (MSE)}$$

$$F_0 = \frac{\frac{643.633}{3}}{\frac{839.033}{17}} = 4.347 \qquad F_{3,17;0.05} = 3.20^{\circ}$$

• Hence Reject
$$H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4$$

ANOVA Table

 F_0

Factor	Sum of Squares	Degree of freedom	Mean Squares	F value
Treatment Error	<u>SSTr</u> = 643.633 <u>SSE</u> = 839.033	4-1 21-4	MSTr = 643.633/3 MSE = 839.033/17	<u>Fo</u> = 4.347
Total	<u>SST</u> =1482.666	20		

Total

1482.667

<Answer of Example 9.1.1>

Statistics	Analysis Var	Score	Group Name	Grad	de						
Group Variable (Grade)	Observation	Mean	Std Dev	std e	err	Population Mean 95% Confidence Interval		955	Population Variance % Confidence Interval		
1 (Group 1)	6	78.333	7.789		3.180	(70.159,	86.507)	7) (23.638, 364.929)			
2 (Group 2)	6	74.500	6.565		2.680	(67.610,	81.390)	(16.793, 259.260)			
3 (Group 3)	5	71.400	7.127		3.187	(62.550, 80.250)		(62.550, 80.250)		(62.550, 80.250) (18.235, 4	
4 (Group 4)	4	87.500	6.245		3.122	(77.563, 97.437)		(12.516, 542.181)			
Total	21	77.333	8.610	1.879 (73.4		(73.414,	(73.414, 81.253)		391, 154.593)		
Missing Observations	0										
Analysis of Variance											
Factor	Sum of Squares	deg o freedo	nf Mean	Squares F		value p valu		e			
Treatment	643.6	643.633		214.544		4.347		0.0191			
Error	839.0	33	17	49.355							

20

Menu

<Answer of Example 9.1.1>

Testing Hypothesis ANOVA

[Hypothesis] $H_o: \mu_1 = \mu_2 = \dots = \mu_k$

 H_1 : At least one pair of means is different

[Test Type] *F test* (ANOVA)

Significance Level $\alpha = \odot 5\% \bigcirc 1\%$

[Sample Data] Input either sample data using BSV or sample statistics at the next boxes

	-	_			_			-		-		
Sample 1	81	75	69	90	72	83]
Sample 2	65	80	73	79	81	69]
Sample 3	72	67	62	76	80]
Sample 4	89	94	79	88]
[Sample Statistics]												
$n_1 = [$	(6		n ₂ =	=	6	j	$n_3 =$	=	5	$n_4 =$	4
$\bar{x}_I = [$	78	.33		$\bar{x}_2 =$	=	74.	50	$\bar{x}_3 =$:	71.40	$\bar{x}_4 =$	87.50
$s_1^2 = [$	60	.67		s_2^{2}	=	43.	10	$s_3^2 =$	=	50.80	$s_4^2 =$	39.00
Execute												

Table 9.1.2 Notation of one-way ANOVA

Factor	Obser	rved val	Average	
Level 1	Y_{11}	Y_{12}	 Y_{1n_1}	\overline{Y}_{1} .
Level 2	Y_{21}	Y_{22}	 Y_{2n_2}	\overline{Y}_2 .
Level k	Y_{k1}	Y_{k2}	 $Y_{k\!n_k}$	\overline{Y}_{k} .

ANOVA Model

$$Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \ i = 1, 2, ..., k; j = 1, 2, ..., n_i$$

Hypothesis

 $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$ $H_1:$ At least one pair of α_i is not equal to 0

	Table 9.1.	3 Analysis	of variance table of one-way	ANOVA
Factor	Sum of	Degree of	Mean Squares	F value
Factor	Squares	freedom		
Treatment	COTA	<i>l</i> - 1	MCTr = $CCTr / (l_{1} - 1)$	E - MOTr/MOE
Treatment	5511	$\kappa - 1$	10011 - 3011 / (k-1)	$F_0 = \text{INISTITINSE}$
Error	SSE	n-k	MSE = SSE / (n-k)	
Total	SST	n-1	$(n = \sum_{i=1}^{k} n_i)$	
			i=1	
 Total S 	um of Square	25	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{})^2$	
 Treatm 	ent Sum of S	quares	SSTr = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y}_{i\cdot} - \overline{Y}_{\cdot\cdot})^2$	
 Error S 	um of Square	25	SSE = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i})^2$	
• SST = 3	SSTr + SSE			

• If $F_0 > F_{k-1,n-k;\alpha}$, then reject H_0

Thank you