Introduction to Statistics and Data Science using eStat **Chapter 9 Testing Hypothesis for Several Population Means** 9.1 ANOVA for Experiments of Single Factor 9.1.1 Multiple Comparison 9.1.2 Residual Analysis Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan - 9.1 Analysis of Variance for Experiments of Single Factor - 9.1.1 Multiple Comparison - 9.1.2 Residual Analysis - 9.2 Design of Experiments for Sampling - 9.2.1 Completely Randomized Design - 9.2.2 Randomized block design - 9.3 Analysis of Variance for Experiments of Two Factors [Example 9.1.1] In order to compare the English proficiency of each grade at a university, samples were randomly selected from each grade to take the same English test, and the data are in Table 9.1.1. | Grade | English Proficiency Score | Average | |-------|----------------------------------|----------------------------| | 1 | 81 75 69 90 72 83 | $\overline{y}_{1.} = 78.3$ | | 2 | 65 80 73 79 81 69 | \overline{y}_{2} = 74.5 | | 3 | 72 67 62 76 80 | $\overline{y}_{3.} = 71.4$ | | 4 | 89 94 79 88 | $\overline{y}_{4.} = 87.5$ | \overline{y}_4 . #### <Answer> $H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4$ H_1 : at least one pair of μ_i is not the same #### <Answer of Example 9.1.1> $$F_0 = \frac{\frac{SSTr}{(4-1)}}{\frac{SSE}{(21-4)}} = \frac{Treatment\ Mean\ Square\ (MSTr)}{Error\ Mean\ Square\ (MSE)} \sim F_{3,17}$$ $$F_0 = \frac{\frac{643.633}{3}}{\frac{839.033}{17}} = 4.347$$ $F_{3,17;0.05} = 3.20$... - Hence Reject $H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4$ - ANOVA Table | Factor | Sum of Squares | Degree
of freedom | Mean Squares | F value | |--------------------|--------------------------------|----------------------|--------------------------------------|------------| | Treatment
Error | SSTr= 643.633
SSE = 839.033 | 4-1
21-4 | MSTr = 643.633/3
MSE = 839.033/17 | Fo = 4.347 | | Total | SST =1482.666 | 20 | | | #### 9.1.1 Multiple Comparison Hypothesis $$H_o: \mu_i = \mu_j$$ $H_1: \mu_i \neq \mu_j$ $i = 1, 2, ..., k-1; j = i+1, i+2, ..., k$ Tukey's Honestly Significant Difference (HSD) Test If $$|\bar{y}_i - \bar{y}_i| > HSD_{ij}$$, then Reject H_o where $$HSD_{ij} = q_{k,n-k;\alpha} \sqrt{\frac{1}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right) MSE}$$ $q_{k,n-k;\alpha}$ is the studentized range distribution #### 9.1.1 Multiple Comparison [Example 9.1.2] In [Example 9.1.1], the analysis variance of English scores by grade concluded that the null hypothesis was rejected and the average English scores for each grade were not all the same. - Apply multiple comparisons to check where the differences exist among each school grade with a significant level of 5%. - Use 「eStat」 to check the results. #### <Answer> - Hypothesis H_o : $\mu_i = \mu_i$, H_1 : $\mu_i \neq \mu_j$ i = 1, 2, ..., 3; j = i + 1, i + 2, ..., 4 - HSD Test If $|\bar{y}_i - \bar{y}_j| > HSD_{ij}$, then reject H_o # <Answer of Example 9.1.2> - $\begin{array}{ll} \text{1)} & H_0: \ \mu_1 = \mu_2 & H_1: \ \mu_1 \neq \mu_2 \\ & |\overline{y}_1 \overline{y}_2| = |78.3 74.5| = 3.8 \\ & \text{HSD}_{12} \ = \ q_{k,n-k;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_1} + \frac{1}{n_2})} \text{MSE} \\ & = \ q_{4,\,21-4;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{6})} 49.355 \ = \ 11.530 \end{array}$ Therefore, accept H_0 . - 2) $H_0: \mu_1 = \mu_3 \quad H_1: \mu_1 \neq \mu_3$ $|\overline{y}_1 \overline{y}_3| = |78.3 71.4| = 6.9$ $\text{HSD}_{13} = q_{k,n-k;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_1} + \frac{1}{n_3})} \text{MSE}$ $= q_{4,21-4;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{5})49.355} = 12.092$ Therefore accept H_0 . 3) $H_0: \ \mu_1 = \mu_4 \quad H_1: \ \mu_1 \neq \mu_4$ $|\overline{y}_1 - \overline{y}_4| = |78.3 - 88.5| = 10.2$ $\text{HSD}_{14} = q_{k,n-k;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_1} + \frac{1}{n_4})\text{MSE}}$ $= q_{4,21-4;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{4})49.355} = 12.891$ Therefore accept H_0 . - 4) $H_0: \mu_2 = \mu_3$ $H_1: \mu_2 \neq \mu_3$ $|\overline{y}_2 \overline{y}_3| = |74.5 71.4| = 3.1$ $HSD_{23} = q_{k,n-k;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_2} + \frac{1}{n_3})MSE}$ $= q_{4,21-4;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{5})49.355} = 12.092$ - Therefore accept H_0 . - 5) $H_0: \mu_2 = \mu_4$ $H_1: \mu_2 \neq \mu_4$ $|\overline{y}_2 \overline{y}_4| = |74.5 88.5| = 14$ $HSD_{24} = q_{k,n-k;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_2} + \frac{1}{n_4})}MSE$ $= q_{4,21-4;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{4})49.355} = 12.891$ Therefore, reject H_0 . 6) $$H_0$$: $\mu_3 = \mu_4$ H_1 : $\mu_3 \neq \mu_4$ $$|\overline{y}_3 - \overline{y}_4| = |71.4 - 88.5| = 17.1$$ $$\text{HSD}_{34} = q_{k,n-k;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_3} + \frac{1}{n_4})} \text{MSE}$$ $$= q_{4,21-4;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{5} + \frac{1}{4})49.355} = 13.396$$ Therefore, reject H_0 . #### <Answer of Example 9.1.2> | Multiple
Comparison | Analysis Var | (Score) | Group Name | (Grade) | | | |---|----------------------|----------------------|----------------------|----------------------|--|--| | Mean
Difference
(95%HSD) | 1 (Group 1)
78.33 | 2 (Group 2)
74.50 | 3 (Group 3)
71.40 | 4 (Group 4)
87.50 | | | | 1 (Group 1)
78.33 | | 3.83
(11.53) | 6.93
(12.09) | 9.17
(12.89) | | | | 2 (Group 2)
74.50 | 3.83
(11.53) | | 3.10
(12.09) | 13.00
(12.89) | | | | 3 (Group 3)
71.40 | 6.93
(12.09) | 3.10
(12.09) | | 16.10
(13.40) | | | | 4 (Group 4)
87.50 | 9.17
(12.89) | 13.00
(12.89) | 16.10
(13.40) | | | | | , | | | | | | | | Testing Means
* 95%, ** 99% | 3 (Group 3)
71.40 | 2 (Group 2)
74.50 | 1 (Group 1)
78.33 | 4 (Group 4)
87.50 | | | | 3 (Group 3)
71.40 | | | | * | | | | 2 (Group 2)
74.50 | | | | * | | | | 1 (Group 1)
78.33 | | | | | | | | 4 (Group 4)
87.50 | * | * | | | | | #### 9.1.2 Residual Analysis - ANOVA test is based on assumptions about the error term ϵ_{ij} . - \Rightarrow ϵ_{ij} 's are independent of each other (independence) - \Rightarrow each variance of ϵ_{ij} is constant , σ^2 (homoscedasticity) - \Rightarrow each ϵ_{ii} is normally distributed (normality) - Validity of these assumptions should always be investigated. - $\Rightarrow \epsilon_{ii}$ can not be observed - \Rightarrow residual, $Y_{ij} \overline{Y}_{i}$, as estimate of ϵ_{ij} is used to check assumptions. - ⇒ residual analysis #### 9.1.2 Residual Analysis # Thank you