Introduction to Statistics and Data Science using eStat

Chapter 9 Testing Hypothesis for Several Population Means

9.1 ANOVA for Experiments of Single Factor 9.1.1 Multiple Comparison 9.1.2 Residual Analysis

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

- 9.1 Analysis of Variance for Experiments of Single Factor
 - 9.1.1 Multiple Comparison
 - 9.1.2 Residual Analysis
- 9.2 Design of Experiments for Sampling
 - 9.2.1 Completely Randomized Design
 - 9.2.2 Randomized block design
- 9.3 Analysis of Variance for Experiments of Two Factors

[Example 9.1.1] In order to compare the English proficiency of each grade at a university, samples were randomly selected from each grade to take the same English test, and the data are in Table 9.1.1.

Grade	English Proficiency Score	Average
1	81 75 69 90 72 83	$\overline{y}_{1.} = 78.3$
2	65 80 73 79 81 69	\overline{y}_{2} = 74.5
3	72 67 62 76 80	$\overline{y}_{3.} = 71.4$
4	89 94 79 88	$\overline{y}_{4.} = 87.5$

 \overline{y}_4 .

<Answer>

 $H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : at least one pair of μ_i is not the same

<Answer of Example 9.1.1>

$$F_0 = \frac{\frac{SSTr}{(4-1)}}{\frac{SSE}{(21-4)}} = \frac{Treatment\ Mean\ Square\ (MSTr)}{Error\ Mean\ Square\ (MSE)} \sim F_{3,17}$$

$$F_0 = \frac{\frac{643.633}{3}}{\frac{839.033}{17}} = 4.347$$
 $F_{3,17;0.05} = 3.20$...

- Hence Reject $H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4$
- ANOVA Table

Factor	Sum of Squares	Degree of freedom	Mean Squares	F value
Treatment Error	SSTr= 643.633 SSE = 839.033	4-1 21-4	MSTr = 643.633/3 MSE = 839.033/17	Fo = 4.347
Total	SST =1482.666	20		

9.1.1 Multiple Comparison

Hypothesis

$$H_o: \mu_i = \mu_j$$

 $H_1: \mu_i \neq \mu_j$ $i = 1, 2, ..., k-1; j = i+1, i+2, ..., k$

Tukey's Honestly Significant Difference (HSD) Test

If
$$|\bar{y}_i - \bar{y}_i| > HSD_{ij}$$
, then Reject H_o

where
$$HSD_{ij} = q_{k,n-k;\alpha} \sqrt{\frac{1}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right) MSE}$$

 $q_{k,n-k;\alpha}$ is the studentized range distribution

9.1.1 Multiple Comparison

[Example 9.1.2] In [Example 9.1.1], the analysis variance of English scores by grade concluded that the null hypothesis was rejected and the average English scores for each grade were not all the same.

- Apply multiple comparisons to check where the differences exist among each school grade with a significant level of 5%.
- Use 「eStat」 to check the results.

<Answer>

- Hypothesis H_o : $\mu_i = \mu_i$, H_1 : $\mu_i \neq \mu_j$ i = 1, 2, ..., 3; j = i + 1, i + 2, ..., 4
- HSD Test

If $|\bar{y}_i - \bar{y}_j| > HSD_{ij}$, then reject H_o

<Answer of Example 9.1.2>

- $\begin{array}{ll} \text{1)} & H_0: \ \mu_1 = \mu_2 & H_1: \ \mu_1 \neq \mu_2 \\ & |\overline{y}_1 \overline{y}_2| = |78.3 74.5| = 3.8 \\ & \text{HSD}_{12} \ = \ q_{k,n-k;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_1} + \frac{1}{n_2})} \text{MSE} \\ & = \ q_{4,\,21-4;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{6})} 49.355 \ = \ 11.530 \end{array}$ Therefore, accept H_0 .
- 2) $H_0: \mu_1 = \mu_3 \quad H_1: \mu_1 \neq \mu_3$ $|\overline{y}_1 \overline{y}_3| = |78.3 71.4| = 6.9$ $\text{HSD}_{13} = q_{k,n-k;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_1} + \frac{1}{n_3})} \text{MSE}$ $= q_{4,21-4;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{5})49.355} = 12.092$

Therefore accept H_0 .

3) $H_0: \ \mu_1 = \mu_4 \quad H_1: \ \mu_1 \neq \mu_4$ $|\overline{y}_1 - \overline{y}_4| = |78.3 - 88.5| = 10.2$ $\text{HSD}_{14} = q_{k,n-k;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_1} + \frac{1}{n_4})\text{MSE}}$ $= q_{4,21-4;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{4})49.355} = 12.891$ Therefore accept H_0 .

- 4) $H_0: \mu_2 = \mu_3$ $H_1: \mu_2 \neq \mu_3$ $|\overline{y}_2 \overline{y}_3| = |74.5 71.4| = 3.1$ $HSD_{23} = q_{k,n-k;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_2} + \frac{1}{n_3})MSE}$ $= q_{4,21-4;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{5})49.355} = 12.092$
- Therefore accept H_0 .
- 5) $H_0: \mu_2 = \mu_4$ $H_1: \mu_2 \neq \mu_4$ $|\overline{y}_2 \overline{y}_4| = |74.5 88.5| = 14$ $HSD_{24} = q_{k,n-k;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_2} + \frac{1}{n_4})}MSE$ $= q_{4,21-4;0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{6} + \frac{1}{4})49.355} = 12.891$

Therefore, reject H_0 .

6)
$$H_0$$
: $\mu_3 = \mu_4$ H_1 : $\mu_3 \neq \mu_4$
$$|\overline{y}_3 - \overline{y}_4| = |71.4 - 88.5| = 17.1$$

$$\text{HSD}_{34} = q_{k,n-k;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{n_3} + \frac{1}{n_4})} \text{MSE}$$

$$= q_{4,21-4;\,0.05} \cdot \sqrt{\frac{1}{2}(\frac{1}{5} + \frac{1}{4})49.355} = 13.396$$
 Therefore, reject H_0 .

<Answer of Example 9.1.2>

Multiple Comparison	Analysis Var	(Score)	Group Name	(Grade)		
Mean Difference (95%HSD)	1 (Group 1) 78.33	2 (Group 2) 74.50	3 (Group 3) 71.40	4 (Group 4) 87.50		
1 (Group 1) 78.33		3.83 (11.53)	6.93 (12.09)	9.17 (12.89)		
2 (Group 2) 74.50	3.83 (11.53)		3.10 (12.09)	13.00 (12.89)		
3 (Group 3) 71.40	6.93 (12.09)	3.10 (12.09)		16.10 (13.40)		
4 (Group 4) 87.50	9.17 (12.89)	13.00 (12.89)	16.10 (13.40)			
, , , , , , , , , , , , , , , , , , , ,						
Testing Means * 95%, ** 99%	3 (Group 3) 71.40	2 (Group 2) 74.50	1 (Group 1) 78.33	4 (Group 4) 87.50		
3 (Group 3) 71.40				*		
2 (Group 2) 74.50				*		
1 (Group 1) 78.33						
4 (Group 4) 87.50	*	*				

9.1.2 Residual Analysis

- ANOVA test is based on assumptions about the error term ϵ_{ij} .
 - \Rightarrow ϵ_{ij} 's are independent of each other (independence)
 - \Rightarrow each variance of ϵ_{ij} is constant , σ^2 (homoscedasticity)
 - \Rightarrow each ϵ_{ii} is normally distributed (normality)
- Validity of these assumptions should always be investigated.
 - $\Rightarrow \epsilon_{ii}$ can not be observed
 - \Rightarrow residual, $Y_{ij} \overline{Y}_{i}$, as estimate of ϵ_{ij} is used to check assumptions.
 - ⇒ residual analysis

9.1.2 Residual Analysis

Thank you