Introduction to Statistics and Data Science using eStat

Chapter 9 Testing Hypothesis for Several Population Means

9.2 Design of Experiments for Sampling 9.2.1 Completely Randomized Design 9.2.2 Randomized Block Design 9.2.3 Latin Square Design

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan 9.1 Analysis of Variance for Experiments of Single Factor 9.1.1 Multiple Comparison 9.1.2 Residual Analysis

9.2 Design of Experiments for Sampling 9.2.1 Completely Randomized Design 9.2.2 Randomized block design

9.3 Analysis of Variance for Experiments of Two Factors

- 9.2.1 Completely Randomized Design
- Design of experiments to have little impact from other factors.
- One way to do this is to make the whole experiments random.
- Example: Compare gas milage of three cars (A, B, C) with 5 drivers

Driver	1	2	3	4	5	
	В	А	В	С	А	
Car Type	В	С	А	А	С	
	C	В	А	В	С	

9.2.2 Randomized Block Design

Driver	1	2	3	4	5
Car Type (gas mileage)	A(22.4) C(20.2) B(16.3)	B(12.6) C(15.2) A(16.1)	C(18.7) A(19.7) B(15.9)	A(21.1) B(17.8) C(18.9)	A(24.5) C(23.8) B(21.0)

9.2.2 Randomized Block Design

Statistical model of the randomized block design:

$$Y_{ij} = \mu + \alpha_i + B_j + \epsilon_{ij}, \qquad i = 1, 2, ..., k, j = 1, 2, ..., b$$

 B_j : effect of j^{th} level of the block variable

In the randomized block design, the total variation is divided into as follows:

$$Y_{ij} - \overline{Y}_{..} = (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..}) + (\overline{Y}_{i.} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..})$$

9.2.2 Randomized Block Design

Division of sum of squares and degree of freedom Sum of squares : SST = SSE + SSTr + SSB Degree of freedom : bk-1 = (b-1)(k-1) + (k-1) + (b-1) Total sum of squares, degree of freedom $bk\!-\!1$

$$\text{SST} = \sum_{i=1}^{k} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{..})^2$$

Error sum of squares, degree of freedom (b-1)(k-1)

$$\text{SSE} = \sum_{i=1}^k \sum_{j=1}^b (Y_{ij} - \overline{Y}_i - \overline{Y}_j + \overline{Y}_i)^2$$

Treatment sum of squares, degree of freedom k-1

$$SSTr = \sum_{i=1}^{k} \sum_{j=1}^{b} (\overline{Y}_{i} - \overline{Y}_{j})^{2}$$
$$= b \sum_{i=1}^{k} (\overline{Y}_{i} - \overline{Y}_{j})^{2}$$

Block sum of squares, degree of freedom b-1

$$SSB = \sum_{i=1}^{k} \sum_{j=1}^{b} (\overline{Y}_{,j} - \overline{Y}_{,j})^{2}$$
$$= k \sum_{j=1}^{b} (\overline{Y}_{,j} - \overline{Y}_{,j})^{2}$$

Table 9.2.3 Analysis of Variance Table of the randomized block design

Variation	Sum of Squares	Degree of freedom	Mean Squares	F value
Treatment	SSTr	k - 1	$MSTr = \frac{SSTr}{k-1}$	$F_0 = \frac{MSTr}{MSE}$
Block	SSB	b - 1	$MSB = \frac{SSB}{b-1}$	
Error	SSE	(b-1)(k-1)	$MSE = \frac{SSE}{(b-1)(k-1)}$	
Total	SST	bk-1		

[Example 9.2.1] Table 9.2.4 is the rearrangement of the fuel mileage data in Table 9.2.2 measured by five drivers and car types.

Driver		1	2	3	4	5	Average
Car Type	А	22.4	16.1	19.7	21.1	24.5	20.76
	В	16.3	12.6	15.9	17.8	21.0	16.72
	С	20.2	15.2	18.7	18.9	23.8	19.36
Average		19.63	14.63	18.10	19.27	23.10	18.947

1) Assuming that this data has been measured by the completely design, use "eStat_ to do the analysis of variance whether the three car types have the same fuel mileage.

2) Assuming that this data has been measured by the randomized block design, use ^reStat I to do the analysis of variance whether the three car types have the same fuel mileage.

<Answer of [Example 9.2.1]>

File	[Ex921GasMileage.csv							
Anal 3: N	Analysis Var by Group 3: Miles I: Car								
(Selected data: Raw Data) (Select up to two g									
SelectedVar V3 by V1,									
	Car	Driver	Miles	V4					
1	А	1	22.4						
2	А	2	16.1						
3	А	3	19.7						
4	А	4	21.1						
5	А	5	24.5						
6	В	1	16.3						
7	В	2	12.6						
8	В	3	15.9						
9	В	4	17.8						
10	В	5	21.0						
11	С	1	20.2						
12	С	2	15.2						
13	С	3	18.7						
14	С	4	18.9						
15	С	5	23.8						

<Answer of [Example 9.2.1]>

Analysis of Variance						Multiple Comparison	Analysis Var	(Miles)	Group Name	(Car)
Factor	Sum of Squares	deg of freedom	Mean Squares	F value	p value	Mean Difference	1 (A) 20.76	2 (B) 16.72	3 (C) 19.36	
Treatment	42.085	2	21.043	2.190	0.1546	0.1546 (95%HSD)				
Error	115.312	12	9.609			1 (A) 20.76		4.04 (5.23)	1.40 (5.23)	
Total	157.397	14				2 (B)	4.04		2.64	
						16.72	(5.23)		(5.23)	
\star						3 (C) 19.36	1.40 (5.23)	2.64 (5.23)		

<Answer of [Example 9.2.1]>

Two- dimension Statistics								
Observation Mean Std Dev	Factor (Driver Level1	B Factor B r) (Driver) (1) Level2 (2)			Factor B (Driver) Level3 (3)	Factor B (Driver) Level4 (4)	Factor B (Driver) Level5 (5)	Factor A Level i Total
FactorA (Car) Level1 (A)	2	1 2.400 NaN	16.1 N	1 100 IaN	1 19.700 NaN	1 21.100 NaN	1 24.500 NaN	5 20.760 3.148
FactorA (Car) Level2 (B)	1 16.300 NaN		12.6 N	1 500 IaN	15.900 NaN	1 17.800 NaN	1 21.000 NaN	5 16.720 3.054
FactorA (Car) Level3 (C)	1 20.200 NaN		1 1 :0.200 15.200 NaN NaN		1 18.700 NaN	1 18.900 NaN	1 23.800 NaN	5 19.360 3.097
Factor B Level j Total	3 19.633 3.089		3 14.633 1.818		: 18.100 1.970	3 3 0 19.267 0 1.680	3 23.100 1.852	15 18.947 3.353
Missing Observations		0						
Analysis Variano	of :e						1	
Factor		S	Sum of Squares		deg of freedom	Mean Squares	F value	p value
Factor A (Car)		42.085		2	21.043	43.44	7 < 0.000
Factor B (D	river)		111.437		4	27.859	57.52	1 < 0.000
Error			3.875		8	0.484		
Total			157.397		14			

10

9.2.3 Latin Square Design

Two block variables:

Table 9.2.6 Fuel mileage data by four drivers and four road types of four car types (A, B, C, D)

		Column 1 Road 1	Column 2 Road 2	Column 3 Road 3	Column 4 Road 4
Row 1 Row 2 Row 3 Row 4	Driver 1 Driver 2 Driver 3 Driver 4	A B C D	B C D A	C D A B	D A B C
Null hypot	hesis	H _a :	$u_1 = u_2 = \cdots$	$\cdot = \mu$	

Null hypothesis Alternative hypothesis

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_r$ $H_1:$ At least one pair of μ_i is not equal

11

9.2.3 Latin Square Design

• Statistical model of the randomized block design: $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad i, j, k = 1, 2, ..., r$

 α_i : effect of i^{th} level of row block variable

 β_j : effect of j^{th} level of column block variable

 γ_k : effect of k^{th} treatment variable

• In the Latin square design, total variation is divided as follows: $Y_{ijk} - \overline{Y}_{...} = (Y_{ijk} - \overline{Y}_{i...} - \overline{Y}_{..k} + 2\overline{Y}_{...}) + (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{..k} - \overline{Y}_{...}) + (\overline{Y}_{..k} - \overline{Y}_{...})$

9.2.3 Latin Square Design

Statistical model of the randomized block design:

$$Y_{ij} = \mu + \alpha_i + B_j + \epsilon_{ij}, \qquad i = 1, 2, ..., k, j = 1, 2, ..., b$$

 B_j : effect of j^{th} level of the block variable

In the randomized block design, the total variation is divided into as follows:

$$Y_{ij} - \overline{Y}_{..} = (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..}) + (\overline{Y}_{i.} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..})$$

9.2.3 Latin Square Design

Total sum of squares, degrees of freedom $r^3 - 1$ $SST = \sum_{i=1}^{r} \sum_{i=1}^{r} \sum_{j=1}^{r} (Y_{ijk} - \overline{Y}_{...})^2$

Error sum of squares, degrees of freedom $r^2 - 3r + 2$ $SSE = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} (Y_{ijk} - \overline{Y}_{i..} - \overline{Y}_{.j} - \overline{Y}_{..k} + 2\overline{Y}_{...})^2$

Row sum of squares, degrees of freedom r-1 $SSR = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} (\overline{Y}_{i..} - \overline{Y}_{...})^{2}$

Column sum of squares, degrees of freedom r-1 $SSC = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} (\overline{Y}_{.j.} - \overline{Y}_{...})^2$

Treatment sum of squares, degrees of freedom r-1 $SSTr = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} (\overline{Y}_{..k} - \overline{Y}_{...})^{2}$

Table 9.2.8 ANOVA table of the Latin square design

Variation	Sum of Squares	Degrees of freedom	Mean Squares	F value
Treatment	SSTr	r-1	$MSTr = \frac{SSTr}{r-1}$	$F_0 = \frac{MSTr}{MSE}$
Row	SSR	r-1	$MSR = \frac{SSR}{r-1}$	
Column	SSC	r-1	$MSC = \frac{SSC}{r-1}$	
Error	SSE	$r^2 - 3r + 2$	$MSE = \frac{SSE}{r^2 - 3r + 2}$	
Total	SST	$r^3 - 1$		

9.2.3 Latin Square Design

Example 9.2.2

Table 9.2.9 is the fuel mileage data of four car types (A, B, C, D) measured by four drivers and four road types with Latin square design.

Table 9.2.9 Fuel mileage data by four drivers and four road types of four car types (A, B, C, D)

		Column 1	Column 2	Column 3	Column 4	
		Road 1	Road 2	Road 3	Road 4	
Row 1	Driver 1	A(22)	B(16)	C(19)	D(21)	
Row 2	Driver 2	B(24)	C(16)	D(12)	A(15)	
Row 3	Driver 3	C(17)	D(21)	A(20)	B(15)	
Row 4	Driver 4	D(18)	A(18)	B(23)	C(22)	

Use [[]eStatU] to do the analysis of variance whether the four car types have the same fuel mileage.

9.2.3 Latin Square Design

Testin	Testing Hypothesis ANOVA - Latin Square Design Menu										
[Hypothe	[Hypothesis] $H_o: \mu_A = \mu_B = \dots = \mu_r$										
	<i>H</i> ₁ : At least one pair of means is different										
[Test Type	[Test Type] F test (ANOVA)										
[Sample D	ata] Treatmen	nt r = 4	(A,B,C,D)								
	Column1	Column2	Column3	Column4	Column5	Column6	Row				
Row1	A 22	B 16	C 19	D 21			\bar{x}_{1} 19.500				
Row2	B 24	C 16	D 12	A 15			\bar{x}_{2} 16.750				
Row3	C 17	D 21	A 20	B 15			\bar{x}_{3} 18.250				
Row4	D 18	A 18	B 23	C 22			\bar{x}_{4} 20.250				
Row5							x ₅				
Row6							x ₆				
Column	x.1. 20.250	x. ₂ . 17.750	x . ₃ . 18.500	x. ₄ . 18.250	x.5.	x. ₆ .					
Treatment	x1 18.750	x2 19.500	x3 18.500	x ₄ 18.000	x5	x6	x 18.688				
Execute											

9.2.3 Latin Square Design

Dot Graph by Treatment - Mean 24 R2C1 • MC3 22 -· BACA RICI • 13CI 20 -B3C3 • 11C3 18 -84C2 R4C1 • **13C1** 16 -R1C2 E2C2 R2C4 B3C4 14 -12 -R2C3 Treatment 1 Treatment 2 Treatment 4 Treatment

9.2.3 Latin Square Design

Analysis of Variance					
Factor	Sum of Squares	deg of freedom	Mean Squares	F value	p value
Treatment	4.688	3	1.563	0.075	0.9710
Row Var	28.188	3	9.396		
Col Var	14.188	3	4.729		
Error	124.375	6	20.729		
Total	171.438	15			

Thank you