Introduction to Statistics and Data Science using *eStat*

Chapter 10 Nonparametric Testing Hypothesis 10.2 Nonparametric Test for Comparing Locations of Two Populations 10.2.1 Wilcoxon Rank Sum Test

> Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

10.1 Nonparametric Test for Location of Single Population 10.1.1 Sign Test 10.1.2 Wilcoxon Signed Rank Sum Test

10.2 Nonparametric Test for Comparing Locations of Two Populations 10.2.1 Independent Samples: Wilcoxon Rank Sum Test 10.2.2 Paired Samples: Wilcoxon Signed Rank Sum Test

10.3 Nonparametric Test for Comparing Locations of Several Populations

10.3.1 Completely Randomized Design: Kruskal-Wallis Test 10.3.2 Randomized block design: Friedman Test

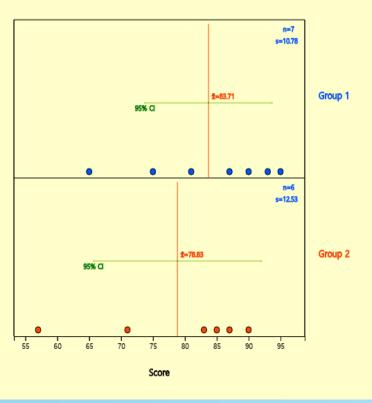
10.2.1 Wilcoxon Rank Sum Test

[Example 10.2.1] A professor teaches the Statistics courses to students in the Department of Economics and the Department of Management. In order to compare exam scores of students in the two departments, 7 students were randomly sampled from the Economics Department and 6 students from the Management Department as follows:

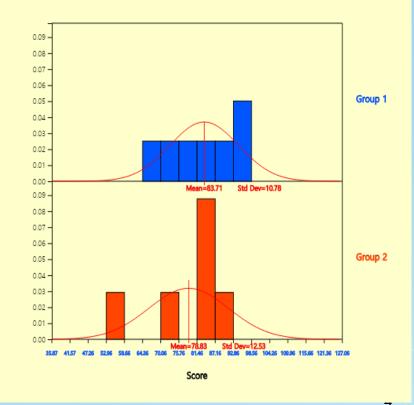
Department of Economics87 75 65 95 90 81 93Department of Management57 85 90 83 87 71

1) Draw a histogram of the data to verify that the testing hypothesis can be performed using a parametric method.

2) Apply the Wilcoxon rank sum test with the significance level of 5%.


3) Check the result of the Wilcoxon rank sum test using ^{[[]}eStat_].

<Answer of Example 10.2.1>


• Hypothesis $H_o: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$

File	File EX100201_ScoreByDept.csv				
Analysis Var by Group 2: Score					
(Selected data: Raw Data) (or Paired Var) SelectedVar V2 by V1,					
	Dept	Score	V3	V4	
1	1	87			
2	1	75			
3	1	65			
4	1	95			
5	1	90			
6	1	81			
7	1	93			
8	2	57			
9	2	85			
10	2	90			
11	2	83			
12	2	87			
13	2	71			

(Group Dept) Score Confidence Interval Graph

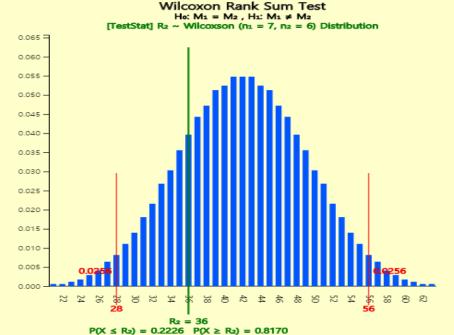
Probability Histogram and Normal Distribution

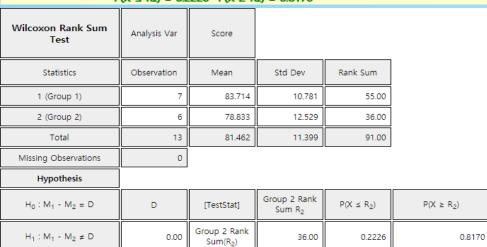
<Answer of Example 10.2.1>

• Hypothesis $H_o: M_1 = M_2$ $H_1: M_1 \neq M_2$

	Sorted Data of	Sorted Data of	Ranks	Ranks
	Sample 1	Sample 2	of Sample 1	of Sample 2
		57		1
	65		2	
		71		3
	75		4	
	81		5	
		83		6
K		85		7
	87	87	8.5	8.5
	90	90	10.5	10.5
	93		12	
	95		13	
		Sum of ranks	$R_1 = 55$	$R_2 = 36$

Ł	<answer e<="" of="" th=""><th>xample</th><th>10.2.1></th><th>Rank Sum</th><th><i>n</i>₁= 7</th><th><i>n</i>₂= 6</th><th></th></answer>	xample	10.2.1>	Rank Sum	<i>n</i> ₁ = 7	<i>n</i> ₂ = 6	
				x	P(X=x)	P(X≤x)	P(X≥x)
			Wilcoxon Rank Sum Test Table	21	0.0006	0.0006	1
	All possible	Sum of		22	0.0006	0.0012	0.9994
	permutation of	ranks,	n1 = 7, n2 = 6	23	0.0012	0.0023	0.9988
	permutation of	Tatiks,	0.060 -	24	0.0017	0.0041	0.9977
	ranks	R_2	0.055 -	25	0.0029	0.007	0.9959
			0.050 - 0.045 -	26	0.0041	0.0111	0.993
			0.040 -	27	0.0064	0.0175	0.9889
	{1,2,3,4,5,6}	21	0.035 -	28	0.0082	0.0256	0.9825
	{1,2,3,4,5,7}	22	0.030 - 0.025 -	29	0.0111	0.0367	0.9744
			0.020 -			•••	
	•••	•••	0.015 - 0.010 -	55	0.0111	0.9744	0.0367
	{8,9,10,11,12,13}	63	0.005 -	56	0.0082	0.9825	0.0256
				57	0.0064	0.9889	0.0175
L			2 2 2 2 3 3 4 4 4 4 5 5 5 5 8 8	58	0.0041	0.993	0.0111
	59 0.0029 0.9959 0.007						0.007
•	Since $P(X \le Z)$	60	0.0017	0.9977	0.0041		
•	• decision rule: 'If $R_2 \leq 27.5$ or $R_2 \geq 56.5$, then reject H_0			′ <u>61</u>	0.0012	0.9988	0.0023
				62	0.0006	0.9994	0.0012
• In this problem $R_2 = 36$, we can not reject H_o .				63	0.0006	1	0.0006


<Answer of Example 10.2.1>


Wilcoxon Rank Sum Test : Location Parameter M₁, M₂

Menu

[Sample Statistics]

Sample Size	n_l	=	7	n_2	=	6
Rank Sum	R_l	=	55	R_2	=	36
Execute						

7

• $w_2(n_1, n_2)$: Wilcoxon rank sum distribution of R_2 with sample size n_1 and n_2

Table 10.2.4 Wilcoxon rank sum test			
Type of Hypothesis	Decision Rule Test Statistic: R_2 = 'Sum of ranks assigned samples of Y		
1) H_0 : M_1 = M_2 H_1 : M_1 > M_2	If $R_2 > w_2(n_1,n_2)_{lpha}$, then reject H_0 , else accept H_0		
2) H_0 : M_1 = M_2 H_1 : M_1 < M_2	If $R_2 < w_2(n_1,n_2)_{1-lpha}$, then reject H_0 , else accept H_0		
3) H_0 : $M_1 = M_2$ H_1 : $M_1 \neq M_2$	If $R_2 < w_2(n_1,n_2)_{1-lpha/2}$ or $R_2 > w_2(n_1,n_2)_{lpha/2}$, then reject H_0 , else accept H_0		

✤ If there is a tie in the combined sample, assign the average rank.

Table 10.2.5 Wilcoxon rank sum test (large sample case)			
Type of Hypothesis	Decision Rule Test Statistic: R_2 = 'Sum of ranks assigned samples of Y		
1) H_0 : M_1 = M_2 H_1 : M_1 > M_2	If $rac{R_2 - E(R_2)}{\sqrt{V(R_2)}} > z_lpha$, then reject H_0 , else accept H_0		
2) H_0 : M_1 = M_2 H_1 : M_1 < M_2	If $rac{R_2 - E(R_2)}{\sqrt{V(R_2)}} < -z_lpha$, then reject H_0 , else accept H_0		
3) H_0 : $M_1 = M_2$ H_1 : $M_1 \neq M_2$	If $\left rac{R_2 - E(R_2)}{\sqrt{V(R_2)}} ight > z_{lpha/2}$, then reject H_0 , else accept H_0		
• $E(R_2) = \frac{n_1(n_1+n_2+1)}{2}$	$\frac{1}{12}$, V(R ₂) = $\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$		

Thank you