Introduction to Statistics and Data Science using *eStat* 

**Chapter 10 Nonparametric Testing Hypothesis** 

## 10.3 Nonparametric Test for Comparing Locations of Several Populations 10.3.1 Kruskal-Wallis Test

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan



10.1 Nonparametric Test for Location of Single Population 10.1.1 Sign Test 10.1.2 Wilcoxon Signed Rank Sum Test

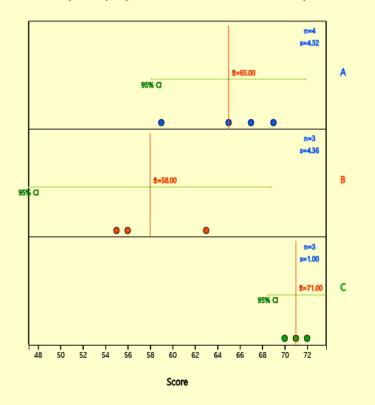
10.2 Nonparametric Test for Comparing Locations of Two Populations 10.2.1 Independent Samples: Wilcoxon Rank Sum Test 10.2.2 Paired Samples: Wilcoxon Signed Rank Sum Test

10.3 Nonparametric Test for Comparing Locations of Several Populations

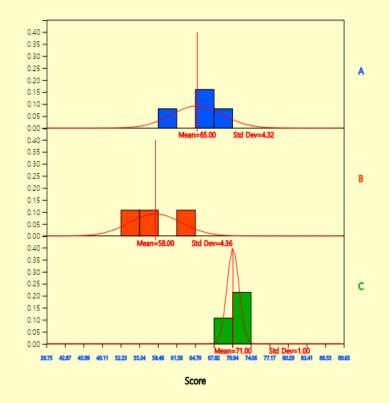
10.3.1 Completely Randomized Design: Kruskal-Wallis Test 10.3.2 Randomized block design: Friedman Test

**10.3.1 Completely Randomized Design : Kruskal-Wallis Test** 

[Example 10.3.1] The result of a survey of the job satisfaction by sampling employees of three companies are as follows. From this data, can you say that the three companies have different job satisfaction?


| Company A | 69 | 67 | 65 | 59 |
|-----------|----|----|----|----|
| Company B | 56 | 63 | 55 |    |
| Company C | 71 | 72 | 70 |    |

- 1) Draw a histogram of the data to see whether the comparison of job satisfaction for three companies can be made using a parametric test.
- 2) Using the Kruskal-Wallis test, test whether the three companies have the same job satisfaction or not with the significance level of 5%
- 3) Check the above result of the Kruskal-Wallis test using *"eStat\_.*


#### <Answer of Example 10.3.1>

| File | EX100301_JobSatisfaction.csv |             |      | csv           |       |  |
|------|------------------------------|-------------|------|---------------|-------|--|
|      | Analysis Var                 |             |      | by Group      |       |  |
| 2:5  | Score                        |             | ⊻ 1: | Compan        | y     |  |
| ( 9  | Selected data                | a: Raw Data | ) (S | elect up to t | two g |  |
| Sele | ctedVar V                    | 2 by V1     | ,    |               |       |  |
|      | Company                      | Score       | V3   | V4            |       |  |
| 1    | А                            | 69          |      |               |       |  |
| 2    | А                            | 67          |      |               |       |  |
| 3    | А                            | 65          |      |               |       |  |
| 4    | А                            | 59          |      |               |       |  |
| 5    | В                            | 56          |      |               |       |  |
| 6    | В                            | 63          |      |               |       |  |
| 7    | В                            | 55          |      |               |       |  |
| 8    | С                            | 71          |      |               |       |  |
| 9    | С                            | 72          |      |               |       |  |
| 10   | С                            | 70          |      |               |       |  |

(Group Company) Score Confidence Interval Graph



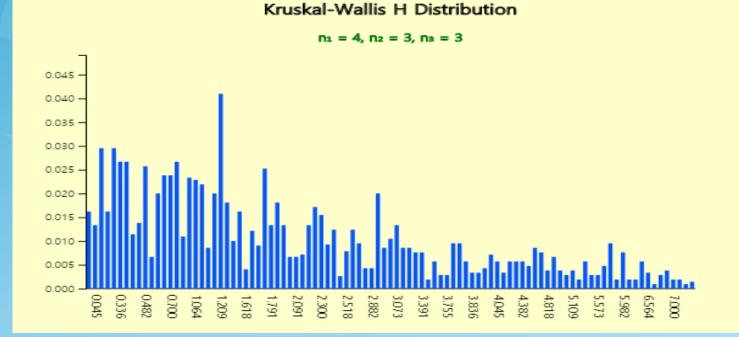
#### Probability Hitogram and Normal Distribution



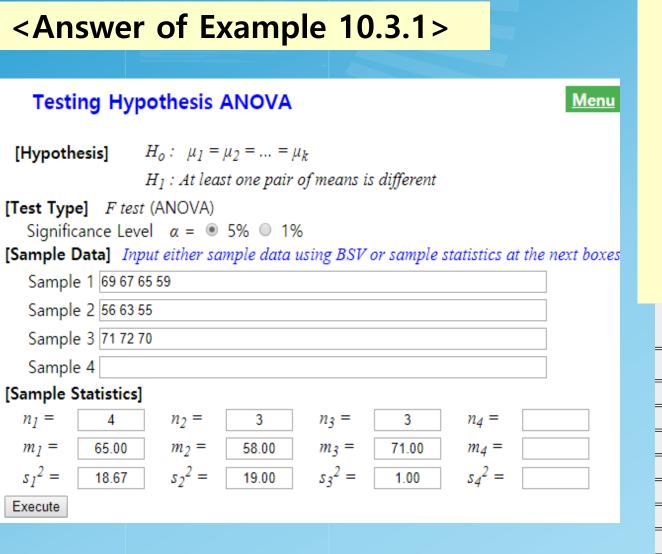
4

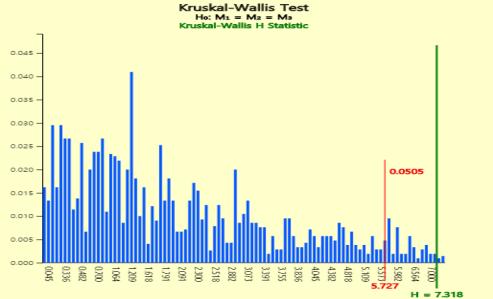
#### <Answer of Example 10.3.1>

#### • Hypothesis $H_o: M_1 = M_2 = M_3$


 $H_1$ : At least one pair of location parameters is not the same

| Sample 1<br>Sorted Data | Sample 2<br>Sorted Data | Sample 3<br>Sorted Data | Sample 1<br>Rank | Sample 2<br>Rank | Sample 3<br>Rank |
|-------------------------|-------------------------|-------------------------|------------------|------------------|------------------|
| 59                      | 55<br>56                |                         | 3                | 1<br>2           |                  |
|                         | 63                      |                         | 5                | 4                |                  |
| 65<br>67<br>69          |                         |                         | 6<br>7           |                  |                  |
|                         |                         | 70<br>71<br>72          |                  |                  | 8<br>9<br>10     |
|                         |                         | Sum of ranks            | $R_1 = 21$       | $R_2 = 7$        | $R_3 = 27$       |


Kruskal-Wallis Test Statistic


$$H = \frac{12}{n(n+1)} \sum_{j=1}^{3} \frac{R_j^2}{n_j} - 3(n+1)$$
$$= \frac{12}{10(10+1)} \left(\frac{21^2}{4} + \frac{7^2}{3} + \frac{27^2}{3}\right) - 3(10+1) = 7.318$$

• If H > 5.727, then reject  $H_0$ , hence reject  $H_0$ 



| H distribution | K = 3                     |                           |                           |
|----------------|---------------------------|---------------------------|---------------------------|
|                | <b>n</b> <sub>1</sub> = 4 | <b>n</b> <sub>2</sub> = 3 | <b>n</b> <sub>3</sub> = 3 |
| х              | P(X = x)                  | P(X x)                    | P(X x)                    |
| 0.018          | 0.0162                    | 0.0162                    | 1.0000                    |
| 0.045          | 0.0133                    | 0.0295                    | 0.9838                    |
|                |                           |                           |                           |
| 5.727          | 0.0048                    | 0.9543                    | 0.0505                    |
| 5.791          | 0.0095                    | 0.9638                    | 0.0457                    |
| 5.936          | 0.0019                    | 0.9657                    | 0.0362                    |
| 5.982          | 0.0076                    | 0.9733                    | 0.0343                    |
| 6.018          | 0.0019                    | 0.9752                    | 0.0267                    |
| 6.155          | 0.0019                    | 0.9771                    | 0.0248                    |
| 6.300          | 0.0057                    | 0.9829                    | 0.0229                    |
| 6.564          | 0.0033                    | 0.9862                    | 0.0171                    |
| 6.664          | 0.0010                    | 0.9871                    | 0.0138                    |
| 6.709          | 0.0029                    | 0.9900                    | 0.0129                    |
| 6.745          | 0.0038                    | 0.9938                    | 0.0100                    |
| 7.000          | 0.0019                    | 0.9957                    | 0.0062                    |
| 7.318          | 0.0019                    | 0.9976                    | 0.0043                    |
| 7.436          | 0.0010                    | 0.9986                    | 0.0024                    |
| 8.018          | 0.0014                    | 1.0000                    | 0.0014                    |





 $P(X \le H) = 0.9976 P(X \ge H) = 0.0024$ 

| Kruskal-Wallis Test                                               | Analysis Var | Score  |          |          |
|-------------------------------------------------------------------|--------------|--------|----------|----------|
| Statistics                                                        | Observation  | Mean   | Std Dev  | Rank Sum |
| 1 (A)                                                             | 4            | 65.000 | 4.320    | 21.00    |
| 2 (B)                                                             | 3            | 58.000 | 4.359    | 7.00     |
| 3 (C)                                                             | 3            | 71.000 | 1.000    | 27.00    |
| Total                                                             | 10           | 64.700 | 6.237    | 55.00    |
| Missing Observations                                              | 0            |        |          |          |
| Hypothesis                                                        |              |        |          |          |
| H <sub>0</sub> : M <sub>1</sub> = M <sub>2</sub> = M <sub>3</sub> | [TestStat]   | н      | P(X ≤ H) | P(X ≥ H) |
| At least one pair of locations<br>is different                    | н            | 7.318  | 0.9976   | 0.0024   |

#### **10.3.1 Completely Randomized Design : Kruskal-Wallis Test**

| Hypothesis                                                                                     | Decision Rule<br>Test Statistic: <i>H</i>                                            |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| $H_0$ : $	au_1 = 	au_2 = \cdots = 	au_k$<br>$H_1$ : At least one pair of $	au_j$ is not equal. | If $H > h(n_1, n_2, \cdots, n_k)_{\alpha}$ , then reject $H_0$ , else accept $H_0$ . |

 $(n_1, n_2, \dots, n_k)$ : Kruskal-Wallis H distribution

✤ If there are tied values in the combined sample, assign the average of ranks.

#### **10.3.1 Completely Randomized Design : Kruskal-Wallis Test**

| Table 10.3.6 <u>Kruskal</u> -Wallis test                                                   | in case of large samples.                                          |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Hypothesis                                                                                 | Decision Rule<br>Test Statistic: <i>H</i>                          |
| $H_0: 	au_1 = 	au_2 = \cdots = 	au_k$<br>$H_1:$ At least one pair of $	au_j$ is not equal. | If $H > \chi^2_{k-1;lpha}$ , then reject $H_0$ , else accept $H_0$ |

✤ If there are tied values in the combined sample, assign the average of ranks.



# Thank you