Introduction to Statistics and Data Science using eStat

Chapter 11 Testing Hypothesis for Categorical Data

11.1.1 Goodness of Fit Test for Categorical Data

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

- 11.1.1 Goodness of Fit Test for Categorical Data
- 11.1.2 Goodness of Fit Test for Continuous Data
- 11.2 Testing Hypothesis for Contingency Table
 - 11.2.1 Independence Test
 - 11.2.2 Homogeneity Test

11.1.1 Goodness of Fit Test for Categorical Data

[Example 11.1.1] The result of a survey of 150 people before a local election to find out the approval ratings of three candidates is as follows.

- Looking at this frequency table alone, it seems that A candidate has a 40 percent approval rating, higher than the other candidates.
- Based on this sample survey, perform the goodness of fit test whether three candidates have the same approval rating or not. Use "eStatU" with the 5% significance level.

Candidate	Number of Supporters	Percent
Α	60	40.0%
В	50	33.3%
С	40	25.7%
Total	150	100%

<Answer of Example 11.1.1>

Hypothesis

 H_0 : Three candidates have the same approval rating. $(p_1 = p_2 = p_3 = \frac{1}{3})$

 H_1 : Three candidates have different approval rating.

Observed and Expected Frequency

Candidate	Observed frequency (denoted as O_i)	Expected frequency (denoted as E_i)
A	$o_1 = 60$	$E_1 = 50$
В	$o_2 = 50$	$E_2 = 50$
С	$o_3^- = 40$	$E_3 = 50$
Total	150	150

<Answer of Example 11.1.1>

Test Statistic

$$\chi_{obs}^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{2} - E_{2})^{2}}{E_{2}} + \frac{(O_{3} - E_{3})^{2}}{E_{3}}$$

$$= \frac{(60 - 50)^{2}}{50} + \frac{(50 - 50)^{2}}{50} + \frac{(40 - 50)^{2}}{50} = 4$$

Decision Rule

'If
$$\chi^2_{obs} > \chi^2_{k-1;\alpha}$$
 , reject H_0 '

Since $\chi^2_{3-1; 0.05} = 5.991$, H_0 cannot be rejected.

<Answer of Example 11.1.1>

Confidence Interval

A:
$$0.40 \pm 1.96 \sqrt{\frac{0.40(1-0.40)}{150}} \Leftrightarrow (0.322, 0.478)$$

B:
$$0.33 \pm 1.96 \sqrt{\frac{0.33(1-0.33)}{150}} \Leftrightarrow (0.255, 0.405)$$

C:
$$0.27 \pm 1.96 \sqrt{\frac{0.27(1-0.27)}{150}} \Leftrightarrow (0.190, 0.330)$$

<Answer of Example 11.1.1>

Goodness of Fit Test Menu				
	[Hypothesis] H_o : Observed & theoretical Distributions are the same H_l : Observed & theoretical Distributions are different			
[Test Type] χ^2 test Significance Level $\alpha = 9.5\% = 1\%$				
[Sample Data] Enter cell from upper left cell				
Observed Frequency O Expected Probability p Expected Frequency E(>5)				
Row 1 60	0.333	49.95		
Row 2 50	0.333	49.95		
Row 3 40	0.333	49.95		
Row 4				
Row 5				
Row 6				
Row 7				
Row 8				
Row 9				
	합계	149.85		
Execute				

ved Distribution~Theoretical Distribution H1: Observed Distribution≠Theoretical Di

[Goodness of Fit Test]

- A categorical variable X which has possible values x_1, x_2, \dots, x_k and their probabilities are p_1, p_2, \dots, p_k respectively.
- Observed frequencies from n samples are $(O_1, O_2, ..., O_k)$ and expected frequencies $(E_1, E_2, ..., E_k)$. The significance level is α .
- Hypothesis:

$$H_0$$
: Distribution of (O_1, O_2, \dots, O_k) follows $(p_{10}, p_{20}, \dots, p_{k0})$ H_1 : Distribution of (O_1, O_2, \dots, O_k) do not follow $(p_{10}, p_{20}, \dots, p_{k0})$

Decision Rule:

'If
$$\chi_{obs}^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} > \chi_{k-m-1;\,\alpha}^2$$
, reject H_0 '
 m is the number of population parameters estimated from the samples.

* E_i should be greater than 5

Thank you