Introduction to Statistics and Data Science using *eStat*

Chapter 11 Testing Hypothesis for Categorical Data

11.2.1 Independence Test

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

11.1 Goodness of Fit Test

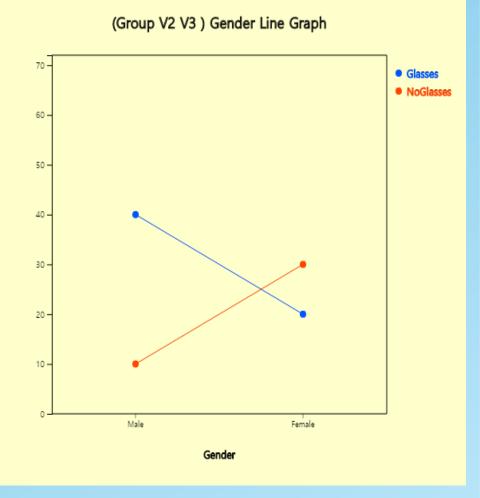
11.1.1 Goodness of Fit Test for Categorical Data 11.1.2 Goodness of Fit Test for Continuous Data

11.2 Testing Hypothesis for Contingency Table

11.2.1 Independence Test 11.2.2 Homogeneity Test

11.2.1 Independence Test

[Example 11.2.1] In order to investigate whether college students who are wearing glasses are independent by gender, a sample of 100 students was collected and its contingency table was prepared as follows:


- 1) Using "eStat₁, draw a line graph of use of eyeglasses by gender.
- 2) Test the hypothesis at 5% of the significance level to see if gender and wearing of glasses are independent or related to each other.
- 3) Check the result of the independence test using **"eStatU**.

	Wear Glasses	No Glasses	Total
Men	40	10	50
Women	20	30	50
Total	60	40	100

<Answer of Example 11.2.1>

File EX110201_GlassesByG				sByGend	ler.csv
	ar Gender			y Group NoGlas	ses
Selecti	ion)	ta: Summary /1 by V2		(Summa	iry Data: I
	Gender	Glasses	NoGlasse	V4	V5
1	Male	40	10		
2	Female	20	30		

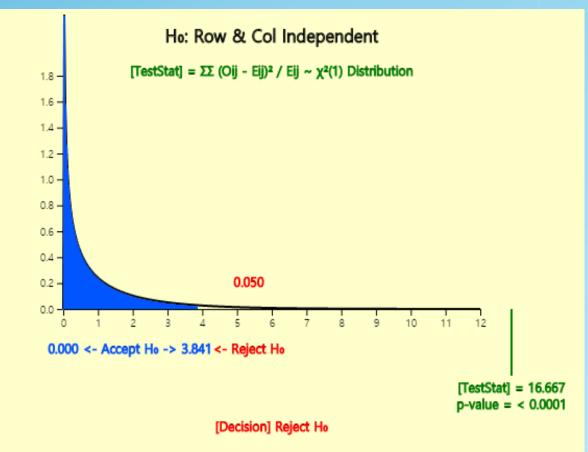
Independent contingency table	Wear Glasses	No Glasses	Total
Men	30	20	50
Women	30	20	50
Total	60	40	100

<Answer of Example 11.2.1>

- Hypothesis
 H₀: Row and column variables are independent of each other
 H₁: Row and column variables are related
- Test Statistic

$$\chi_{obs}^2 = \frac{(40-30)^2}{30} + \frac{(10-20)^2}{20} + \frac{(20-30)^2}{30} + \frac{(30-20)^2}{20} = 16.67$$

Decision Rule


'If
$$\chi_{obs}^2 > \chi_{(r-1)(c-1); \alpha}^2$$
, reject H_0 '
Since $\chi_{(2-1)(2-1); 0.05}^2 = 3.841$, H_0 is rejected.

Menu

<Answer of Example 11.2.1>

Testing Independence

[Hypothe		H _o : Row and column variables are independent H ₁ : Row and column variables are not independent						
[Test Typ	[Test Type] $\chi^2 test$ Significance Level $\alpha = \odot 5\% \odot 1\%$							
[Sample	Data] <i>(Ent</i>	er observation f	from upper left o	cell)				
	Column 1	Column 2	Column 3	Column 4	Column 5			
Row 1	40	10						
Row 2	20	30						
Row 3								
Row 4								
Execute								

			mn Varia B ₂ …		Total	
Row Variable A	A ₂ :	0 ₂₁	$m{0}_{12}$ $m{0}_{22}$ \vdots	0 _{2c}	T ₁ . T ₂ . : 	• T
Total	A _r		O_{r2} $T_{\cdot 2}$		<i>T_r.</i> <i>n</i>	χ2
Observed from					olumn Variah	la P

• Test Statistics: $\chi^2_{obs} = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - E_{ij})^2}{E_{ij}}$

7

Observed freque	ency	Column Variable B				
		B ₁	B ₂	•••	B _c	
Row Variable A	A_1	$E_{11} = T_{1} \cdot \frac{T_{\cdot 1}}{n}$	$E_{12} = T_1 \cdot \frac{T_{\cdot 2}}{n}$	•••	$E_{1c} = T_{1} \cdot \frac{T_{\cdot c}}{n}$	
	A_2	$E_{21} = T_2 \cdot \frac{T_{\cdot 1}}{n}$	$E_{22} = T_2 \cdot \frac{T_{\cdot 2}}{n}$	•••	$E_{2c} = T_2 \cdot \frac{T_{\cdot c}}{n}$	
	:		:			
	A_r	$E_{r1} = T_{r} \cdot \frac{T_{\cdot 1}}{n}$	$E_{r2} = T_{r} \cdot \frac{T_{\cdot 2}}{n}$	•••	$E_{rc} = T_{r} \cdot \frac{T_{\cdot c}}{n}$	

[Independence Test]

Hypothesis:

 H_0 : Row and column variables are independent. (i.e., $p_{ij} = p_{i}$, $p_{\cdot j}$) H_1 : Row and column variables are not independent

Decision Rule:

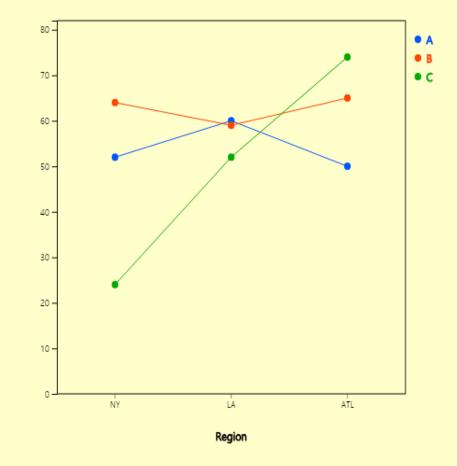
'If
$$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - E_{ij})^2}{E_{ij}} > \chi_{(r-1)(c-1);\alpha}^2$$
, reject H_0 '

where r and c are the number of attributes of row and column variable

In order to use the chi-square distribution for the independence test, all expected frequencies are at least 5 or more.

If an expected frequency of a cell is smaller than 5, the cell is combined with adjacent cell for analysis.

[Example 11.2.2] A market research institute surveyed 500 people on how three beverage products (A, B and C) are preferred by region and obtained the following contingency table.


- 1) Draw a line graph of beverage preference by region using "eStat_.
- 2) Test whether the beverage preference by the region is independent of each other at the significance level of 5%.
- 3) Check the result of the independence test using *"eStatU_.*

Region	E A	Beverage B	e C	Total
New York	52	64	24	140
Los Angels	60	59	52	171
Atlanta	50	65	74	189
Total	162	188	150	500

<Answer of Example 11.2.2>

1				Rada Maria					
File	[EX110202	ion.cs	EditVar					
X Va	ar		by Group						
1: F	Region		✓ 4:	С		~			
(Selected data: Summary Data) (Summary Data: Multiple						tiple			
Selection)									
Sele	ctedVar	/1 by V2	,V3,V4,			Cancel			
	Region	А	В	С	V5	V 🔺			
1	NY	52	64	24					
2	LA	60	59	52					
3	ATL	50	65	74					

(Group V2 V3 V4) Region Line Graph

<Answer of Example 11.2.2>

Hypothesis

 H_0 : Region and beverage preference are independent of each other H_1 : Region and beverage preference are not independent

Expected frequency

$$\begin{pmatrix} \frac{T_{\cdot 1}}{n}, \frac{T_{\cdot 2}}{n}, \frac{T_{\cdot 3}}{n} \end{pmatrix} = \begin{pmatrix} \frac{162}{500}, \frac{88}{500}, \frac{50}{500} \end{pmatrix}$$

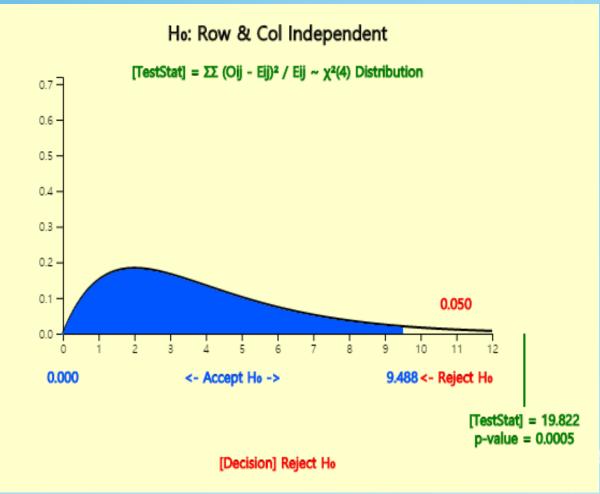
$$E_{11} = T_{1} \cdot \frac{162}{500} \qquad E_{12} = T_{1} \cdot \frac{88}{500} \qquad E_{13} = T_{1} \cdot \frac{50}{500}$$

$$E_{21} = T_{2} \cdot \frac{162}{500} \qquad E_{22} = T_{2} \cdot \frac{88}{500} \qquad E_{23} = T_{2} \cdot \frac{50}{500}$$

$$E_{31} = T_{3} \cdot \frac{162}{500} \qquad E_{32} = T_{3} \cdot \frac{88}{500} \qquad E_{33} = T_{3} \cdot \frac{50}{500}$$

<Answer of Example 11.2.2>

- Hypothesis
 - H_0 : Region and beverage preference are independent of each other
 - H_1 : Region and beverage preference are not independent
- Test Statistic


$$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = \frac{(52 - 45.36)^2}{45.36} + \frac{(60 - 55.40)^2}{55.40} + \dots + \frac{(74 - 56.70)^2}{56.70} = 18.825$$

Decision Rule

'If $\chi^2_{obs} > \chi^2_{(r-1)(c-1); \alpha}$, reject H_0 ' Since $\chi^2_{(3-1)(3-1); 0.05} = 9.488$, H_0 is rejected.

<Answer of Example 11.2.2>

Testing Independence Menu							
[Hypothesis] H_o : Row and column variables are independent H_1 : Row and column variables are not independent							
[Test Type] $\chi^2 test$ Significance Level $\alpha = \odot 5\% \odot 1\%$ [Sample Data] <i>(Enter observation from upper left cell)</i>							
[b			Column 3		Column 5		
Row 1	52	64	24				
Row 2	60	59	52				
Row 3	50	65	74				
Row 4							
Execute							

<Answer of Example 11.2.2> EX040201_Categorical_MaritalBy EditVar File Analysis Var by Group 2: Marital \mathbf{v} 1: Gender \mathbf{v} (Selected data: Raw Data) (Summary Data: Multiple Selection) SelectedVar V2 by V1, Cancel Gender Marital V3 V4 V5 . 1 1 2 2 2 3 1 2 4 5 1 2 6 1 7 1 2 2 8 9 1 3 2 10 1

Cross Table	Col Variable	(Gender)			
Row Variable (Marital)	1	2	Total		
Group 1	4 66.7%	2 33.3%	6 100%		
Group 2	1 33.3%	2 66.7%	3 100%		
Group 3	1 100.0%	0 0.0%	1 100%		
Total	6 60.0%	4 40.0%	10 100%		
	Missing Observations	0			
Independence Test					
Sum of χ^2 value	1.667	deg of freedom	2	p-value	

0.4346

Thank you