Introduction to Statistics and Data Science using *eStat*

Chapter 11 Testing Hypothesis for Categorical Data

11.2.2 Homogeneity Test

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

11.1 Goodness of Fit Test

11.1.1 Goodness of Fit Test for Categorical Data 11.1.2 Goodness of Fit Test for Continuous Data

11.2 Testing Hypothesis for Contingency Table

11.2.1 Independence Test 11.2.2 Homogeneity Test

11.2 Testing Hypothesis for Contingency Table

11.2.2 Homogeneity Test

Hypothesis:

*H*₀: Several population distributions are homogeneous *H*₁: Several population distributions are not homogeneous

Decision Rule:

'If
$$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - E_{ij})^2}{E_{ij}} > \chi_{(r-1)(c-1);\alpha}^2$$
, reject H_0 '

where *r* is the number of attributes of categorical variable and *c* is the number of populations

11.2 Testing Hypothesis for Contingency Table

[Example 11.2.3] In order to investigate whether viewers of TV programs are different by age for three programs (A, B and C), 200, 100 and 100 samples were taken separately from the population of young people(20s), middle-aged people (30s and 40s), and older people (50s and over) respectively. Their preference of the program were summarized as follows. Test whether TV program preferences vary by age group at the significance level of 5%.

	Young	Middle Aged	Older	Total
A TV Program B C	120 30 50	10 75 15	10 30 60	140 135 125
Total	200	100	100	400

11.2 Testing Hypothesis for Contingency Table

<Answer of Example 11.2.3>

Hypothesis

 H_0 : TV program preferences for age groups are homogeneous. H_1 : TV program preferences for age groups are not homogeneous.

Test Statistic

$$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = \frac{(120 - 70)^2}{70} + \frac{(10 - 35)^2}{35} + \dots + \frac{(60 - 31.25)^2}{31.25} = 180.495$$

Decision Rule

'If $\chi^2_{obs} > \chi^2_{(r-1)(c-1); \alpha}$, reject H_0 ' Since $\chi^2_{(3-1)(3-1); 0.05} = 9.488$, H_0 is rejected.

Thank you