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CHAPTER OBJECTIVES

In testing hypothesis of the population mean
described in chapters 7 and 8, the number of
populations was one or two. However, many
cases are encountered where there are three
or more population means to compare.

The analysis of variance (ANOVA) is used to
test whether several population means are
equal or not. The ANOVA was first published
by British statistician R. A. Fisher as a test
method applied to the study of agriculture, but
today its principles are applied in many
experimental sciences, including economics,
business administration, psychology and
medicine.

In section 9.1, the one-way ANOVA for single
factor is introduced. In section 9.2, experimental
designs for experiments are introduced. In
section 9.2, the two-way ANOVA for two factors
experiments is introduced.
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9.1 Analysis of Variance for Experiments of Single Factor

Definition

In section 8.1, we discussed how to compare means of two populations using the
testing hypothesis. This chapter discusses how to compare means of several
populations. There are many examples of comparing means of several populations
as follows:

- Are average hours of library usage for each grade the same?

- Are yields of three different rice seeds equal?

- In a chemical reaction, are response rates the same at four different
temperatures?

- Are average monthly wages of college graduates the same at three different
cities?

The group variable used to distinguish groups of the population, such as the
grade or the rice, is called a factor.

Factor

The group variable used to distinguish groups of the population is called
a factor.

This section describes the one-way analysis of variance (ANOVA) which compares
population means when there is a single factor. Section 9.2 describes how the
experiment is designed to extract sample data. Section 9.3 describes the two-way
ANOVA to compare several population means when there are two factors. Let's
take a look at the following example.

Example 9.1.1

In order to compare the English proficiency of each grade at a university, samples were
randomly selected from each grade to take the same English test, and data are as in

Table 9.1.1. The right column is a calculation of the average 51., 332., 3;3., §4. for
each grade.

Table 9.1.1 English Proficiency Score by Grade

Grade English Proficiency Score Average
1 81 75 69 90 72 83 y,.= 78.3
2 65 80 73 79 81 69 y,.= 745
3 72 67 62 76 80 y;.= 71.4
4 89 94 79 88 y,.= 875

[-] = eBook => EX090101_EnglishScoreByGrade.csv.

1) Using TeStaty , draw a dot graph of test scores for each grade and compare their
averages.

2) We want to test a hypothesis whether average scores of each grade are the same
or not. Set up a null hypothesis and an alternative hypothesis.

3) Apply the one-way analysis of variances to test the hypothesis in question 2).

4) Use TeStat; to check the result of the ANOVA test.

Example 9.1.1
Answer

1) If you draw a dot graph of English scores by each grade, you can see whether
scores of each grade are similar. If you plot the 95% confidence interval of the
population mean studied in Chapter 6 on each dot graph, you can see a more
detailed comparison.
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Example 9.1.1 | * In order to draw a dot graph with data shown in Table 9.1.1 using FeStaty ,
Answer enter data on the sheet and set variable names to 'Grade' and 'Score' as shown in
(continued) <Figure 9.1.1>. In the variable selection box which appears by clicking the ANOVA

. [Tys . .
icon on the main menu of TeStat; , select 'Analysis Var' as ‘Score’ and 'By

Group' as ‘Grade’. The dot graph of English scores by each grade and the 95%
confidence interval are displayed as shown in <Figure 9.1.2>.

Filz ‘EXDQEH01_Eng\lshScoreByGfade
Analysis Var by Group

s ~ ‘ |,,,

Select variablas by click var name Summary Data! Mulf
SelectedVar

Grade Score V3 v4 V!

1 1 81

2 1 75

3 1 69

4 1 20

5 1 72

6 1 83

v 2 65

8 2 80
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10 2 79
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12 2 68
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4 3 67

15 3 62
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19 4 94
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<Figure 9.1.2> 95% Confidence Interval by grade

¢ To review the normality of the data, pressing the [Histogram] button under this
graph (<Figure 9.1.3>) will draw the histogram and normal distribution together, as
shown in <Figure 9.1.4>.
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Example 9.1.1
Answer
(continued)

*

2)

| Confidence Interval Graph Histogram |

Hy:pup=ps=..=up Hj:Atleast one pair of means is different

Significance Level a= '* 5% 1% Confidence Level '® 93% 90%
ANOWA F test | | Standardized Residual Plot | | Kruskal-Wallis Test |

<Figure 9.1.3> Options of ANOVA

Prokability Histogram and Mormal Distribution
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<Figure 9.1.4> Histogram of English score by grade

<Figure 9.1.2> shows sample means as 51‘: 78.3, QQ': 74.5, 53? 71.4, 1_14.: 87.5.
The sample mean of the 4™ grade is relatively larger than the other three grades
and QZ and §3, are similar. Therefore, it can be expected that the population
mean (, and p; would be the same and p, will differ from three other

population means. However, we need to test whether this difference by sample
means is statistically significant.

In this example, the null hypothesis to test is that population means of English
scores of the four grades are all the same, and the alternative hypothesis is that
population means of the English scores are not the same. In other words, if
Hys [ s, 1ty are the population means of English scores for each grade, the

hypothesis to test can be written as follows,

Null hypothesis Hy: py = g = g = 1y
Alternative hypothesis ~ H,: at least one pair of 1, is not the same

3) A measure that can be considered first as a basis for testing differences in multiple

sample means would be the distance from each mean to the overall mean. In
other words, if the overall sample mean for all 21 students is expressed as y.., the

squared distance from each sample mean to the overall mean is as follows when
the number of samples in each grade is weighted. This squared distance is called
the between sum of squares (SSB) or the treatment sum of squares (SSTr).

SSTr = 6(783—y. )2 +6(745—y )2 +5(71.4—y. ) +4(87.5—y. )? = 643.633

If the squared distance SSTr is close to zero, all sample means of English scores for
four grades are similar.
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Example 9.1.1
Answer
(continued)

*

However, this treatment sum of squares can be larger if the number of populations
increases. It requires modification to become a test statistic to determine whether
several population means are equal. The squared distance from each observation to
its sample mean of the grade is called the within sum of squares (SSW) or the
error sum of squares (SSE) as defined below.

SSE = (81—y,.)?+(75—y,)*+ .. +(83—y,)
+(65—1,.)2 + (80—, )2+ ... +(69—y,.)?
+(72—y, )2+ (67—yy )+ ... +(80—y;.)°
+(89—y, )2+ (94—y, )%+ ... +(88—y, )? = 839.033

If population distributions of English scores in each grade follow normal distributions

and their variances are the same, the following test statistic has the F} ;
distribution.
SSTr
(4-1)
By = ——m—
0 SSE
(21—4)

This statistic can be used to test whether population English scores of four grades
are the same or not. In the test statistic, the numerator SSTr/(4—1) is called
the treatment mean square (MSTr) which implies a variance between grade means.
The denominator SSE/(21—4) is called the error mean square (MSE) which
implies a variance within each grade. Thus, the above test statistics are based on
the ratio of two variances which is why the test of multiple population means is
called an analysis of variance (ANOVA).

Calculated test statistic which is the observed F value, F{, using data of English

scores for each grade is as follows:

SSTr 643.633
. (4-1) 3 _
Fo = TGS T Tsaooss 4T
(21—4) 17

Since F37.005 = 3.20, the null hypothesis that population means of English scores
of each grade are the same, Hj: [ = pty = pi3 = iy, is rejected at the 5%
significance level. In other words, there is a difference in population means of
English scores of each grade.

The following ANOVA table provides a single view of the above calculation.

Sum of Squares Degree Mean Squares F value
Factor
of freedom
Treatment | SSTr= 643.633 4-1 MSTr = 643.633/3 Fo = 4.347
Error SSE = 839.033 21-4 MSE = 839.033/17
Total SST =1482.666 20

4) In <Figure 9.1.3>, if you select the significance level of 5%, confidence level of 95%,

and click [ANOVA F test] button, a graph showing the location of the test statistic
in the F distribution is appeared as shown in <Figure 9.1.5>. Also, in the Log Area,
the mean and confidence interval tables and test result for each grade are
appeared as in <Figure 9.1.6>.
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Example 9.1.1
Answer
(continued) (Faciort : Grade) Score Analysis of Varkancs

Mo paw e
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<Figure 9.1.5> TeStat; ANOVA F test

v = Group
fysis Var e Grade
Statistics Analysis Va Score i ad
B s
Group Variable Fopdiancn Mean \t;?:'aa;é:ﬂ
B o Observation Mean Std Dev std e 95% Confidence R
(Grade) 7 95% Confidence
interval 2
Interyal
1 (Group 1) 7] 78.333 7.789 3180 (70159, 86.507) (23.638, 364.929)
2 {Group 2} 7] T4:500 6.565 2.680 (67610, 81.390) {16793, 259.260)
3 {Group 3) 3 F1.400 7327 3187 {62550, 80250 18235 419472)
4 (Group 4) 4 87.500 6.245 3122 (77563, 97437} (12.516, 542.781)
Total 21 F7.333 8.610 1878 (73414, 81.253) {43.351, 154.583)
Missing :
Observations
Analysis of
Variance
Factor ._surr-’ar 'de:gl of Mean Squares F value p value
Squares freedom
Treatment 643.633 3 274544 4347 0018
Error 839.033 17 49.355
Total 1482 667 20

<Figure 9.1.6> [leStat; Basic Statistics and ANOVA table

¢ The analysis of variance is also possible using TeStatU; . Entering the data as in
<Figure 9.1.7> and clicking the [Execute] button will have the same result as in
<Figure 9.1.5>.
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Example 9.1.1
Answer
(continued)

Testing Hypothesis ANOVA

H,:
H; : At least one pair of means is different

[Hypothesis] Hp == .. = U

[Test Type] F fesi (ANOVA)
Significance Level a= @ 3% O 1%
[Sample Data] [npur either sample data using BSV or saimple staristics ar the nexr boves

Sample 1/81 75 69 90 72 83 |
Sample2[65 80 73 79 81 89 |
Sample 3(72 67 62 76 80 |
Sample 489 94 79 88 |
[Sample Statistics]
m= [ 6 | m= [ & | my= [ 5 | m= [ 4 |
;= | 7833 | %= | 7450 | x3= | 7140 | F.= | 8750 |
sP= [ 6067 | si= [ 4310 | si= [ s080 | s = [ 3900 |
[ Execute |

<Figure 9.1.7> ANOVA data input at feStatU;

* The above example refers to two variables, the English score and grade. The
variable such as the English score is called as an analysis variable or a response
variable. The response variable is mostly a continuous variable. The variable used
to distinguish populations such as the grade is called a group variable or a factor
variable which is mostly a categorical variable. Each value of a factor variable Is
called a level of the factor and the number of these levels is the number of
populations to be compared. In the above example, the factor has four levels, 1%,
2", 3™ and 4™ grade. The term 'response' or 'factor' is originated to analyze data
through experiments in engineering, agriculture, medicine and pharmacy.

* The analysis of variance method that examines the effect of single factor on the
response variable is called the one-way ANOVA. Table 9.1.2 shows the typical data
structure of the one-way ANOVA when the number of levels of a factor is k¥ and
the numbers of observation at each level are n;, ny, -, n,.

Table 9.1.2 Notation of the one-way ANOVA

Factor Observed values of sample Average
Level 1 Y Y 1n, ?L
Level 2 Yy Yo 2n, T/2»
Level k& Yy Yio Yin, Y

e Statistical model for the one-way analysis of variance is given as follows:

Yy, =

ij

K o€

J

2:17277k 7:1"277n

2

=pt+ oot o,
Y,; represents the jt" observed value of the response variable for the " level of
factor. The population mean of the " level, y,, is represented as u-+«; where p
is the mean of entire population and «; is the effect of i level for the
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response variable. ¢ denotes an error term of the 4" observation for the "

level and the all error terms are assumed independent of each other and follow
the same normal distribution with the mean 0 and variance o°.

The error term ¢;; is a random variable in the response variable due to reasons
other than levels of the factor. For example, in the English score example,
differences in English performance for each grade can be caused by other
variables besides the variables of grade, such as individual study hours, gender
and 1Q. However, by assuming that these variations are relatively small compared
to variations due to differences in grade, the error term can be interpreted as
the sum of these various reasons.

The hypothesis to test can be represented using «; instead of p, as follows:

Null hypothesis H:o=a,= - =a,=0
Alternative hypothesis H, : At least one pair of «; is not equal to 0

In order to test the hypothesis, the analysis of variance table as Table 9.1.3 is
used.

Table 9.1.3 Analysis of variance table of the one-way ANOVA

E Sum of Degree of Mean Squares F value
actor
Squares freedom
Treatment SSTr kE—1 MSTr = SSTr / (k—1) F, = MSTr/MSE
Error SSE n—k MSE = SSE / (n—k)
Total SST n—1

%

1=1

The three sum of squares for the analysis of variances can be described as
follows. For an explanation, first define the following statistics:

Y., Mean of observations at the i level

i

Y., Mean of total observations

ko o
SST = X)) (Y; —Y.)°

i=1j=1
The sum of squared distances between observed values of the response variable
and the mean of total observations is called the total sum of squares (SST).

kom o
SSTr= 225 (Y, —Y.)?

i=1j=1
The sum of squared distances between the mean of each level and the mean of
total observations is called the treatment sum of squares (SSTr). It represents the

variation between level means.

ki _
SSE = Y2 3(v; —V,)?

i=1j=1
The sum of squared distances between observations of the " level and the
mean of the " level which is referred to as 'within variation’, and is called the

error sum of squares (SSE).

th
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The degree of freedom of each sum of squares is determined by the following
logic: The SST consists of n number of squares, (Yij—?.)Q, but ¥ should be
calculated first, before SST is calculated, and Hence, the degree of freedom of SST
is (n—1). The SSE consists of n number of squares, (¥, —Y;)’ but the k
number of values, Y,., -, Y,. should be calculated first, before SSE is

calculated, and Hence, the degree of freedom of SSE is (n—k). The degree of
freedom of SSTr is calculated as the degree of freedom of SST minus the degree
of freedom of SSE which is (k—1).

In the one-way analysis of variance, the following facts are always established:

Partition of sum of squares and degrees of freedom
Sum of squares: SST = SSE + SSTr
Degrees of freedom: (n—1) = (n—k) + (k—1)

The sum of squares divided by the corresponding degrees of freedom is referred
to as the mean squares and Table 9.1.3 defines the treatment mean squares
(MSTr) and error mean squares (MSE). As in the meaning of the sum of squares,
the treatment mean square implies the average variation between each level of
the factor, and the error mean square implies the average variation within
observations in each level. Therefore, if MSTr is relatively much larger than MSE,
we can conclude that the population means of each level, u, are not the same.
So by what criteria can you say it is relatively much larger?

The calculated F' value, Fj, in the last column of the ANOVA table represents the
relative size of MSTr and MSE. If the assumptions of ¢; based on statistical
theory are satisfied, and if the null hypothesis H,: oy =a,= - =q, =0 is
true, then the below test statistic follows a F distribution with degrees of
freedoms (k—1) and (n—k).

_ MSTr _ SSTr/(k—1)

£ MSE  SSE /(n—k)

Therefore, when the significance level is « for a test, if the calculated value £
is greater than the value of F, ; , ... then the null hypothesis is rejected. That

is, it is determined that the population means of each factor level are not all the
same.

One-way analysis of variance 7 test

Null hypothesis H:a=ay,= - =a,=0

Alternative hypothesis A, : At least one «; is not equal to 0
- _ MSTr

Test Statistic F = MSE

Decision Rule If 7,> F,_, , ... then reject H,

(Note: TeStaty calculates the p-value of this test. Hence, if the p-value is smaller
than the significance level «, then reject the null hypothesis. )
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[Practice 9.1.1]

(Plant Growth by Condition)

Results from an experiment to compare yields (as measured by dried weight of plants)
obtained under a control (leveled ‘ctrl’) and two different treatment conditions (leveled
‘trtl’ and ‘trt2’). The weight data with 30 observations on control and two treatments
(‘crtl’, “rtl’, ‘trt2’), are saved at the following location of [eStat; . Answer the
following questions using TeStaty ,

[s] = eBook = PR090101_Rdatasets_PlantGrowth.csv

1) Draw a dot graph of weights for each control and treatments.
2) Test a hypothesis whether the weights are the same or not. Use the 5% significance
level.

9.1.1 multiple comparisons

If the F test of the one-way ANOVA does not show a significant difference
between each level of the factor, it can be concluded that there is no difference
between each level of populations. However, if you conclude that there are
significant differences between each level as shown in [Example 9.1.1], you need
to examine which levels are different from each other.

The analysis of differences between population means after ANOVA requires
several tests for the mean difference to be performed simultaneously and it is
called as the multiple comparisons. The hypothesis for the multiple comparisons to
test whether the level means, p; and p;, are equal is as follows:

Hy:p=p, Hy oo # g i =12k —1; j=i+1,i+2, ..k

It means that there are ,C, tests to be done simultaneously for the multiple
comparisons if there are k levels of the factor.
There are many multiple comparisons tests, but Tukey's Honestly Significant
Difference (HSD) test is most commonly used. The statistic for Tukey's HSD test to
compare means y; and p; is the sample mean difference ;. —Qj_ and the
decision rule to test 7 : u, =pu; is as follows:

If ly, — y;| > HSD,, then reject H,

T+ Lyse,

2 ' n n;

n; and n; are the number of samples (repetitions) in i level and ;™ level, MSE is the
mean squared error, q, ,_.. i the right tail 100<« percentile of the studentized range
distribution with parameter &k and n—k degrees of freedom. (It can be found at TeStatU,
(<Figure 9.1.8>)).

where HSD; = qp,gia®



9.1 Analysis of Variance for Experiments of Single Factor / 11

HSD Studentized Range Dist. [ Menu |
o= ® 5% 1%
Percentile Table Table Save
HSD
Studentized
dft =
Range
Distribution
PX 2 x) =005 2 3 4 5 6 7 8 9 10
df2 =1 17.870 26.980 32.820 37.080 40.410 43.120 45.400 47,360 49.070
df2=2 6.080 8330 9,800 10880 11.740 12,440 13.030 13.540 13.990
dfi2 =3 4.500 5.910 6.820 7.500 8.040 §.480 8.850 9.180 S.460
df2 = 4 3.930 5.040 5.760 5.290 6.710 7.050 7.350 7.600 7.830
df2 = 5 3.640 4,600 5.220 5.670 6.030 6.330 £.580 5.800 6.890
df2 = 6 3.460 4,340 4.900 5.300 5.630 5.800 6.120 6.320 6.490
df2 =7 3.340 4.160 4.680 5.060 5.360 5.610 5.820 6.000 6.160
df2 = 3.260 4.040 4.530 4.890 5170 5.400 5.600 5770 5.820
df2 =9 3.200 3.850 4410 4760 5.020 5.240 5.430 5.590 5.740
df2 =10 3.150 3.880 4,330 4.650 4.910 5120 5.300 5.460 5.600

<Figure 9.1.8> TeStatU; HSD percentile table

Example 9.1.2

In [Example 9.1.1], the analysis variance of English scores by the grade concluded that
the null hypothesis was rejected and the average English scores for each grade were
not all the same. Now let's apply the multiple comparisons to check where the
differences exist among each school grade with the significance level of 5%. Use
FeStat; to check the result.

Answer

¢ The hypothesis of the multiple comparisons is Hy: p; =p;, H: p;#p; and
the decision rule is as follows:

i ly, — y;| > HSD,, then reject H,.

15

Since there are four school grades (k=4), ,C, = 6 multiple comparisons are
possible as follows. The 5 percentile from the right tail of HSD distribution which is
used to test is gy, f.o = 9491—4:005 = £02.

) Hy: oy =py Hytopy #p,
ly, — y,| =178.3 — 74.5| = 3.8

1 1
HSD1y = din—k:005 ° 2 H1 MSE

1.1
= d421-4;005 ° §(g+g)49-355 = 11.530
Therefore, accept .

2) Hy: py=py  Hy:opy =y
ly, — ys| = 1783 —71.4] = 6.9

ll 1
HSDU = qk,n*k:0.0o 2 H1 MSE

1,1
= da21-4;005 " 5(€+g)49-355 = 12.092
Therefore, accept .
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Example 9.1.2
Answer
(continued)

*

3) Hy: py=py H:opy =y

ly, — vl =178.3—88.5] = 10.2
1.1 1
—(—+—)MSE

HSDyy = din—x:005 ° 2\, n4

1,1
T Qoi-ai005 T A (= 6 +— 1 )49 355=12.891
Therefore, accept .

4 Hy:opy=ps Hitopy#
ly, — ysl = 174.5—71.4] = 3.1

1
— )MSE

1,1
HSDgs = din—x;005 ° 5(11_2 -
1

1
= Quo1—4.005 " 2(6 5)49355 12.092

Therefore, accept .

S) Hy: po=py  H: py#py
lyy — 5,1 = 1745—88.5] = 14
1,1
HSDyy = Ay n—k;005 ° 5(11— )MSE

n4

1,1
= Go—s00 {5 (5T L)19.355 = 12801
Therefore, reject H,.

6) Hy: py=py Hy:opsF gy
lys — vy =714 — 88.5|=17.1
1,1 1
—(—+—)MSE
2 "ny n4
11
= Quo1—4.005 " 2( = )49355 13.396

Therefore, reject H,.

HSD3y = dyn—k:005 °

The result of the above multiple comparisons shows that there is a difference
between p; and pu,, p,and g, as can be seen in the dot graph with average in
<Figure 9.1.1>. It also shows that p; has no significant difference from other
means.

If you click [Multiple Comparison] in the options of the ANOVA as in <Figure 9.1.3>,
FeStat; shows the result of Tukey's multiple comparisons as shown in <Figure
9.1.9>. TeStat; also shows the mean difference and 95% HSD value for the sample
mean combination after rearranging levels of rows and columns in ascending order
of the sample means.

The next table shows that, if the HSD test result for the combination of the two
levels is significant with the 5% significance level, then * will be marked and if it is
significant with the 1% significance level, then ** will be marked, if it is not
significant, then the cell is left blank.
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Example 9.1.2
Answer
(continued)

Multiple

2 Analysis Var
Comparison

(Score) Group Name

Mean
Difference
{95%H5D)

3 {Group 3) 4G
7140

ou
8.33

p1) 3.83

1 {Gr
<
7

ws

2 (Group 2}
74.50 (11.53)

3 (Group 3)
71.40 (12.09)

4 (Group 4)
87.50 {12.89)

Testing Means 3 (Group 3
*05%, *099%

2 {Group 2)
7450

o
c
=]
A
B

(Group 4)

87.50

3 (Group 3}
7140

2 (Group 2)
7450

1 (Group 1)
78.33

4 (Group 4)
87.50

<Figure 9.1.9> HSD Multiple Comarisons

¢ For the analysis of mean differences, confidence intervals for each level may also
be used. <Figure 9.1.2> shows the 95% confidence interval for the mean for each
level. This confidence interval is created using the formula described in Chapter 6,
but the only difference is that the estimate of the variance for the error, 02, is
the pooled variance using overall observations rather than the sample variance of
observed values at each level. In the ANOVA table, MSE is the pooled variance.

¢ In post-analysis using these confidence intervals, there is a difference between
means if the confidence intervals are not overlapped, so the same conclusion can
be obtained as in the previous HSD test.

[Practice 9.1.2]
G

By using the data of [Practice 9.1.1]
[x] = eBook = PR090101_Rdatasets_PlantGrowth.csv

apply the multiple comparisons to check where differences exist among Control and
two treatments with the significance level of 5%. Use feStat;

9.1.2 Residual

Analysis

Another statistical analysis related to the ANOVA is a residual analysis. Various
hypothesis tests in the ANOVA are performed on the condition that assumptions
hold about the error term ¢, Assumptions about error terms include
independence (¢;; are independent of each other), homoscedasticity (each variance
of ¢; is constant as 0%), normality (each €; is normally distributed), etc. The
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validity of these assumptions should always be investigated. However, since ¢;; can
not be observed, the residual as the estimate of €; is used to check the
assumptions. The residuals in the ANOVA are defined as the deviations used in
the equation of the error sum of squares, for example, (Y ~Y,) in the
one-way analysis of variance.

Example 9.1.3

In [Example 9.1.1] of English score comparison by the grade, apply the residual analysis
using TeStaty .

Answer

¢ If you click on [Standardized Residual Plot] of the ANOVA option in <Figure 9.1.3>,
a scatter plot of residuals versus fitted values appears as shown in <Figure 9.1.10>.
In this scatter plot, if the residuals show no unusual tendency around zero and
appear randomly, then the assumptions of independence and homoscedasticity are
valid. There is no unusual tendency in this scatter plot. Normality of the residuals
can be checked by drawing the histogram of residuals.

Residual Plot

a
Hhe
[ 3

<Figure 9.1.10> Residual plot of the ANOVA

[Practice 9.1.3]

By using the data of [Practice 9.1.1]

[] = eBook =» PR090101_Rdatasets_PlantGrowth.csv

apply the residual analysis using "eStat; .

9.2 Design

of Experiments for Sampling

Data such as English scores by the grade in [Example 9.1.1] are not so difficult to
collect samples from each of the grade population. However, obtaining samples
through experiments such as engineering, medicine, or agriculture are often
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difficult to collect a large number of samples due to the influence of many other
external factors, and should be very cautious about sampling. This section
discusses how to design experiments for collecting small number of data from
experiments.

9.2.1 Completely Randomized Design

In order to identify the differences accurately that may exist among each level of
a factor, you should design experiments such as little influence from other factors.
One method to do this is to make the whole experiments random. For example,
consider experiments to compare a fuel mileage per one liter of gasoline for
three types of cars A, B and C. We want to measure the fuel mileage for five
different cars of each type. One driver may try to drive all 15 cars. However, if
only five cars can be measured per day, the measurement will take place over a
total of three days. In this case, changes in daily weather, wind speed and wind
direction can influence the fuel mileage which makes it a question of which car
should be measured for fuel mileage on each day.

If five drivers (1, 2, 3, 4, 5) plan to drive the car to measure the fuel mileage of
all cars a day, the fuel mileage of the car may be affected by the driver. One
solution would be to allocate 15 cars randomly to five drivers and then to
randomize the sequence of experiments as well. For example, each car is
numbered from 1 to 15 and then, the experiment of the fuel mileage is
conducted in the order of numbers that come out using drawing a random
number. Such an experiment would reduce the likelihood of differences caused by
external factors such as the driver, daily wind speed and wind direction, because
randomized experiments make all external factors equally affecting the all
observed measurement values. This method of experiments is called a completely
randomized design of experiments. Table 9.2.1 shows an example allocation of
experiments by this method. Symbols A, B and C represent the three types of
cars.

Table 9.2.1 Example of completely randomized design
of experiments

Driver 1 2 3 4 5
B A B C A

Car Type B C A A C
C B A B C

In general, in order to achieve the purpose of the analysis of variance, it is
necessary to plan experiments thoroughly in advance for obtaining data properly.
The completely randomized design method explained as above is studied in detail
at the Design of Experiments area in Statistics. From the standpoint of the
experimental design, the one-way analysis of variance technique is called an
analysis of the single factor design.

9.2.2 Randomized Block Design

In the experiments of completely randomized design for measuring the fuel
mileage explained in the previous section, 15 cars were randomly allocated to five
drivers. However, one example allocation as inTable 9.2.1 shows a problem of this
completely randomized design. For example, Driver 1 will only experiment with B
and C types of cars and Driver 3 will only experiment A and B types of cars so
that the variable between drivers will not be averaged in the test. Thus, if there
is a significant variation between drivers for measuring the fuel mileage, the error
term of the analysis of variance may not be a simple experimental error. In order
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to eliminate this problem, each driver may be required to experiment with each
type of the car at least once which is known as a randomized block design. Table
9.2.2 shows an example of possible allocation in this case. In this table, the
values in parentheses are the values of the observed fuel mileage.

Table 9.2.2 Example of randomized block design

Driver 1 2 3 4 5
A(22.4) B(12.6) C(18.7) A(21.1) A(24.5)

Car Ty'.‘;e C(20.2) C(15.2) A(19.7) B(17.8) C(23.8)

(gas mileage) | g4q 3) A(16.1) B(15.9) C(18.9) B(21.0)

Table 9.2.2 shows that the total observed values are divided into five groups by
driver, called blocks so that they have the same characteristics. The variable
representing blocks, such as the driver, is referred to as a block variable. A block
variable is considered generally if experimental results are influenced significantly
by this variable which is different from the factor. For example, when examining
the vyield resulting from rice variety, if the fields of the rice paddy used in the
experiment do not have the same fertility, divide the fields into several blocks
which have the same fertility and then all varieties of rice are planted in each
block of the rice paddy. This would eliminate the influence of the rice paddy
which have different fertility and would allow for a more accurate examination of
the differences in yield between rice varieties.

Statistical model of the randomized block design with b blocks can be represented
as follows:

Yi=p+a,+B+e;, i=12-k j=12--b

In this equation, B, is the effect of ;%

S level of the block variable to the
response variable. In the randomized block design, the variation resulting from the
difference between levels of the block variable can be separated from the error
term of the variation of the factor independently. In the randomized block design,

the total variation is divided into as follows:

YJ'*?. = (Kji?i.iif.j_‘— Y)+ (?17?) + (?]7?)

2 B .

If you square both sides of the equation above and then combine for all 4,5, you
can obtain several sums of squares as in the one-way analysis of variance as
follows:

Total sum of squares, degrees of freedom bk—1
E b o
SST=>3 (Y~ Y.
i=1j=1
Error sum of squares, degrees of freedom (b—1)(k—1)
kb _ _ _
SSE=232 (Y~ Y, Y, + V)’
i=1j=1
Treatment sum of squares, degrees of freedom k—1

SSTr:zkab](?i.*?,)z = bEk]( L~ Y)?

i=1j=1 i=1
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Block sum of squares, degrees of freedom b—1

SSB = if(?j—?ﬁ =

i=1j=1 j=1

The following facts are always established in the randomized block design.

Division of the sum of squares and degrees of freedom
SST = SSE + SSTr
bk—1 = (b—1)(k—1) + (k—1)

+ SSB
+ (b-1)

Sum of squares :
Degrees of freedom :

Table 9.2.3 shows the ANOVA table of the randomized block design. In this
ANOVA table, if you combine the sum of squares and degrees of freedom of the
block variable and the error variation, it becomes the sum of squares and degrees
of freedom of the error term in the one-way ANOVA table 9.1.3.

Table 9.2.3 Analysis of Variance Table of the randomized block design

Variation Sum of Degrees  of Mean Squares F value
Squares |freedom

_ SSTr _ MSTr
Treatment SSTr k—1 MSTr = -1 Fy, = VSE
Block SSB b—1 MSB = %

SSE

E —1)(k—1 =
rror SSE (b—1)(k—1) |MSE B0 =1)
Total SST bk—1

In the randomized block design, the entire experiments are not randomized unlike
the completely randomized design, but only the experiments in each block are
randomized.

Another important thing to note in the randomized block design is that, although
the variation of the block variable was separated from the error variation, the
main objective is to test the difference between levels of a factor as in the
one-way analysis of variance. The test for differences between the levels of the
block variable is not important, because the block variable is used to reduce the
error variation and to make the test for differences between the levels of the
factor more accurate.

In addition, the error mean square (MSE) does not always decrease, because
although the block variation is separated from the error variation of the one-way
analysis of variance, the degrees of freedom are also reduced.
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Example 9.2.1

Table 9.2.4 is the rearrangement of the fuel mileage data in Table 9.2.2 measured by
five drivers and car types.

Table 9.2.4 Fuel mileage data by five drivers and three car types

Drive 1 2 3 4 5 Average@ﬁ )
Car A 224 161 197 211 245 20.76
Tvoe B 163 126 159 17.8 21.0 16.72
yp © 202 152 187 189 238 19.36
Average(y ;) 19.63 1463 18.10 19.27 23.10 18.947

[-] = eBook = EX090201_GasMilage.csv

1) Assuming that this data have been measured by the completely randomized design,

use TeStat; to do the analysis of variance whether the three car types have the
same fuel mileage.

2) Assuming that this data have been measured by the randomized block design, use

FeStat; to do the analysis of variance whether the three car types have the same
fuel mileage.

Answer

1) In FeStat; , enter data as shown in <Figure 9.2.1> and click the icon of analysis of

variance . Select 'Analysis Var' as Miles and 'By Group' as Car in the variable
selection box, then the confidence interval graph for each type of cars will appear
such as <Figure 9.2.2>.

File [EX080201_GasMileage.csv {Group Car) Miles Confidence Interval Graph
Analysis Var by Group |
[3: Miles ~ | [1:Car | s
Se data: Raw Data Select up to & 5 Eas il
Se\icted\/ar‘vg by V1 §i e A
Car Driver Miles V4 i §
i : o » » gc @ ®
2 A 2 16.1 o=t
A 3 197 o
4 A 4 214 44T 3
5 |A 5| 245 il i
f E 1 fj ) ee ) @
il B £ \e:D: £ as
s |B 3 15, i CAD
5 |B 4 17.8 Esame@ <
0 B 21.0 sk E
1 |c 1 202 !
12 |c 2 152 . — =il O T <
= ~ e 1z >3 i 1::3 23 2z 24
- C 4 189 i
15 ¢ 5 238
<Figure 9.2.1> Data <Figure 9.2.2> Dot graph and 95% confidence
input for randomized interval for population mean of each car type

block design for
FeStat; ANOVA

Click the [ANOVA F-test] button in the option below the graph to reveal the
ANOVA graph as in <Figure 9.2.3> and the ANOVA table as in <Figure 9.2.4>. The
result of the ANOVA is that there is no difference in fuel mileage between the cars
of each company. The same is true for the multiple comparisons tests in <Figure
9.2.5>.
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Example 9.2.1

Answer

(continued)

Factort ¢ Car) Mies Analsiz of Viarance

M m e xg,

q [TastStay = (S3TH/G-15 7 SSEAn-KD ~ FEL1R) Distibution

Fo = 219, pvalue = 01540
Hrackinn: Accept He

<Figure 9.2.3> ANOVA of gas milage

Analysis of
Variance
Factor o ‘deg o Mean Sguares F value p value
Squares freedom
Treatment 42.085 2 21.043 2.180 0.1546
Error 15312 2 9.609
Total 57307 4
<Figure 9.2.4> ANOVA table of gas milage
Multiple . "
- Analysis Var {Miles) Group Name (car)
Comparisen
(2 i e 3
s 2076 16.72 19.36
1(8) 404 1.40
2076 (5.23) (523
2 (B) 404 264
1672 (5.23) (5.23)
3 () 140 264
1936 (5:23) (5.23)

<Figure 9.2.5> Multiple comparisons by car

2) If this data have been extracted using the randomized block design, the block sum
of squares will be separated from the error sum of squares. Adding Driver variable
to 'by Group' in the variable selection box of TeStat; will give you a scatter plot of
driver-specific fuel mileage for each car type as shown in <Figure 9.2.6>. This
scatter plot shows a significant difference in fuel mileage per driver.
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Example 9.2.1
Answer
(continued)

*

Factor A - Factor § Mean Graph

Foctord : Driver
Lovelt ()

.. Lol £
Lol ()

a2 Laveld {9

Pk )

Miles
FattorA: Car  hevell (&) teveld 4 Leveld £}

<Figure 9.2.6> Fuel mileages for each driver

Click the [ANOVA F-Test] button in the options window below the graph to reveal
the two-way mean table shown in <Figure 9.2.7> and the ANOVA table shown in
<Figure 9.2.8>. This ANOVA table clearly shows a decrease in error sum of squares
and reduces significantly the mean squares of errors. This is due to the large
variation between drivers being separated from the error variation. Factor B (driver)
represents the block sum of squares separated from error term. The p-value shows
that, the block (driver) effect is statistically significant. The F value for the
hypothesis H : a; =a, =a; =0 of fuel mileage by Factor A (car type) is 43.447
and is greater than F,g .= 4.46, so you can reject the F, at the significance
level of 0.05. Consequently, significant differences in fuel mileages between car
types can be found by removing the variation of the block in the error term.

Two-
dimension
Statistics
OCbservation Factor B Fattor B Factor B Factor B Factor B Factor A
Mean (Driver) (Driver) {Driver) {Driver) {Driver) Lovel “- Tatal
Std Dev Levelt (1) Level2 {2} Level3 (3) Leveld (4) Levels (5)
1 1 1 1 1 5
Factora (Canl
acL:Lell :aAr' 22400 16.100 19.700 21.100 24500 20.760
i NalN NaN NaN Nah NalM 3148
1 1 1 1 1 5
FactorA (Car .
“L'::felfz fé 16.300 12,600 15.900 17.800 21.000 16720
i NaM MaM NaN MNak NaN 3034
1 1 1 1 1 5
FactarA (Car}
b i 20.200 15.200 18700 18.900 23.200 19.360
E MNaN Nah Nah NaN NaN 3087
Factor B 3 5 # - H 13
= 19.633 14:633 18.100 19.267 23.100 18.947
Level j Tota ==
3089 1.818 1.870 1.680 1.852 3353
Missing o
Observations

<Figure 9.2.7> Two-way mean table by car and driver
(There is no standard deviation of single data and denoted as NaN)
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Example 9.2.1
Answer
(continued)

Analysis of
Variance
Factor et ;deg At Mean Squares F value p valug
Squares freedom
Factor A (Car) 42085 2 21.043 43,447 < 0.0001
Factor B (Driver) 111437 4 27.859 57.521 < 0.0001

Error 3875 & 0484
Total 157.397 14

<Figure 9.2.8> ANOVA table for randomized block design

¢ In average, car type A has the best fuel mileage than other car types. In order to
examine more about the differences between car types, the multiple comparisons
test in the previous section can be applied. In this example, you can use one HSD
value for all mean comparisons, because the number of repetitions at each level is
the same (n, =r).

[ [0.4
HSD = g34.005 @E = (4.041) 0—584 =1.257

Therefore, there is a significant difference in fuel mileage between all three types of
cars, since the differences between the mean values (4.04, 1.40, 2.64) are all
greater than the critical value of 1.257.

¢ The same analysis of randomized design can be done using FeStatU; by following
data input and clicking [Execute] button.

Testing Hypothesis ANOVA - Randomized Block Design
[Hypothesis] Hy: py=piz=..=
H, : At least one pair of means is different
[Test Type] F zest (ANOVA)
[Sample Data] (Treatment 3 <k <8§)
Block 1[22.4 163 20.2 | %1 19633
Block 2[16.1 126 15.2 | X3. 14633
Block 3[19.7 159 18.7 | 3. 18100
Block 4[21.1 17.8 18.9 | %4 19267
Block 5[24.521.023.8 | Xs. 23100
Block 6 | %
Block 7| | %5
Block 8| | %
Block 9| | %o
X1 20760 X, 16720 X3 19360 @ Xy
%5 K¢ % % K. 18.947

<Figure 9.2.9> Data input for TeStatU; RBD

[Practice 9.2.1]

The following is the result of an agronomist's survey of the yield of four varieties of
wheat by using the randomized block design of the three cultivated areas (block). Test
whether the mean yields of the four wheats are the same or not with 5% significance
level.

Cultivated Area
1 2 3
A 50 60 56
Wheat B 59 52 51
Type C 55 55 52
D 58 58 55

[:] = eBook = PR090201_WheatAreaYield.csv
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9.2.3 Latin Square Design

In the experiments of randomized block design for measuring the fuel mileage
explained in the previous section, there is one extraneous block variation which is
the driver. If the researcher feels that there is an additional variation such as
road type, there are two identifiable sources of extraneous block variations, i.e.,
two block variables. In this case, the researcher needs a design that will isolate
and remove both sources of block variables from residual. The Latin square design
is such a design.

In the Latin square design, we assign one sources of extraneous variation to the
columns of the square and the second source of extraneous variation to the rows
of the square. We then assign the treatments in such a way that each treatment
occurs one and only once in each row and each column. The number of rows,
the number of columns, and the number of treatments, therefore, are all equal.
Table 9.2.5 shows a 3 x 3 typical Latin squares with three rows, three columns
and three treatments designated by capital letters A, B, C.

Table 9.2.5 Fuel mileage data by three drivers
and three road types of three car types (A, B, C)

Column 1 Column 2  Column 3
Road 1 Road 2 Road 3

Row 1 | Driver 1 A B C
Row 2 | Driver 2 B C A
Row 3 | Driver 3 C A B

Table 9.2.6 shows a 4 x 4 typical Latin squares with four rows, four columns and
four treatments designated by capital letters A, B, C, D.

Table 9.2.6 Fuel mileage data by four drivers and four road
types of four car types (A, B, C, D)

Column 1  Column 2 Column 3 Column 4
Road 1 Road 2 Road 3 Road 4

Row 1 | Driver 1
Row 2 | Driver 2
Row 3 | Driver 3
Row 4 | Driver 4

oOow>»
>00W
W>00
Ow>»0

In the Latin square design, treatments can be assigned randomly in such a way
that the car type occurs one and only once in each row and each column..
Therefore, there are many possible designs of 3 x 3 and 4 x 4 Latin square. We
get randomization in the Latin square by randomly selection a square of the
desired dimension from all possible squares of that dimension. One method of
doing this is to randomly assign a different treatments to each cell in each
column, with the restriction that each treatment must appear one and only once
in each row.

Small Latin squares provided only a small number of degrees of freedom for the
error mean square. So a minimum size of 5 x 5 is usually recommended.

The hypothesis of Latin square design with r treatments is as follows:

Null hypothesis Hy:py=py= - =p,
Alternative hypothesis H, : At least one pair of p, is not equal

Statistical model of the r x r Latin square design with 7 treatments can be
represented as follows:
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Yp=pta+8+yntey i=L2-r j=12.0r k=127

where 1, =+«

In this equation, «; is the effect of i'" level of the row block variable to the
response variable and g, is the effect of i level of the column block variable to
the response variable. v, is the effect of k" level of the response variable.

* Notation for row averages, column averages and treatment averages of r x r
Latin squre data are as follows;

Table 9.2.7 Notation for row means, column means and treatment averages
of r x r Latin squre data

Column 1 Column 2 --- Column r Row Average
Row 1 T/1
Row 2 Y., ?2
Row r Y/,
Column Average ?1. ?z ?, Y
Treatment average: Y, Y, - Y,

* In the Latin square design, the variation resulting from the difference between
levels of two block variables can be separated from the error term of the
variation of the factor independently. In the Latin square design, the total
variation is divided into as follows:

Y‘jk-*?.. = (Y;jkii/i..iiy.j.ii/..k+27y.,,) + (Y, -Y) + (?]*?) +(Y,—Y)

2,

If you square both sides of the equation above and then combine for all 4,j,k,
you can obtain the following sums of squares:

Total sum of squares, degrees of freedom -1

SST:iii(Ym_?,)Q

i=li=1j=1

Error sum of squares, degrees of freedom r* —3r+2
SSE=3.0. 31 (Vyy— Y, — ¥, — Y, +2V )?

i=lj=1k=1

Row sum of squares, degrees of freedom r—1

SSR = EJZTJ f)(?,;u—?_f

i=lj=1k=1

Column sum of squares, degrees of freedom r—1

ssc=33 5](?]-,—?,,)2

i=lj=1k=1

Treatment sum of squares, degrees of freedom r—1

SSTr = iii<?r?)2

i=lj=1k=1

* The following facts are always established in the Latin square design. Table 9.2.8
shows the ANOVA table of the Latin square design. In this ANOVA table,
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Sum of squares :

Degrees of freedom :

SST

=1

Division of the sum of squares and degrees of freedom

SSE + SSR + SSC + SSTr

=P =3r+2 + (r—1) + (r—1) + (r—1)

Table 9.2.8 ANOVA table of the Latin square design

Variation Sum of Degrees  of Mean Squares F value
Squares |freedom
_ SSTr _ MSTr
Treatment SSTr r—1 MSTr = —— B = S6E
Row SSR r—1 MSR = rséRl
Column SSC r—1 MSC = rS§C1
; SSE

E 2 MSE = ————

rror SSE r°—3r+2 23,49
Total SST =1

Example 9.2.2 | Taple 9.2.9 is the fuel mileage data of four car types (A, B, C, D) measured by four

drivers and four road types with Latin square design.

Table 9.2.9 Fuel mileage data by four drivers and four road
types of four car types (A, B, C, D)

Column 1 Column 2 Column 3  Column 4
Road 1 Road 2 Road 3 Road 4
Row 1 | Driver 1 A(22) B(16) C(19) D(21)
Row 2 | Driver 2 B(24) C(16) D(12) A(15)
Row 3 | Driver 3 c(17) D(21) A(20) B(15)
Row 4 | Driver 4 D(18) A(18) B(23) C(22)
Use leStatU; to do the analysis of variance whether the four car types have the

same fuel mileage.

In TeStatU; - ‘Testing Hypothesis ANOVA — Latin Square Design’, select the number
of treatment r = 4 and enter data as shown in <Figure 9.2.10>.

Answer | ¢

Testing Hypothesis ANOVA - Latin Square Design 'Menu
[Hypothesis] Hy 'l g =g = =
Hj : At least one pair of means is different
[Test Type] F rest (ANOVA)
[Sample Data] Treatmentr=| 4 |(4,B,C,D)
Columnl Column? Column3 Column4 Column5 Column6 Row
Rowl Al 2 | B[] 16 | c[ 19 | D[ 21 | %y.. 19.500
Row2 B[ 24 | ¢[ 16 | D[ 12 | A[ 15 | .. 16.750
Row3 ¢l 177 | bl 24 | Al 20 | B| 15 | X3.. 18.250
Row4 D| 18 | Al 18 | B[ 23 | c[ 22 | X4 20.250
Row5 Xs..
Row6 X6
Column X.1. 20250 X»5. 17.750 X3 18500 Xg4. 18250 Xis. X6
Treatment X.; 18750 X., 19500  X. 18500 .4 18000 X.5 % %.. 18.688
| Execute ‘

<Figure 9.2.10> Data input for Latin square design in

FeStatU
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Example 9.2.2
Answer
(continued)

¢ Click [Execute] button to show Dot graph by car type in Latin square design as
<Figure 9.2.11> and ANOVA table as in <Figure 9.2.12>. The dot graph and result of
the ANOVA is that there is no difference in fuel mileage between the car types.

D Graph by Treatment
23 ame o Ty
8 RACS
Fri ® !
s
T *RACY
12 :;J’/\’\‘na
45 omc:
®RIC4 o pce
44
4T [ ] )
Tt 1 “Fresimet X Frnaivpad £
Trominaes

<Figure 9.2.11> Dot graph by car type in Latin square design

Analysis of
Variance

Factor ;:gl[; deg of freedom|| Mean Squares F value p value
| Treatment | 4.688 3 1.563]| 0.073] 09710]
| Row Var | 28.188] 3 9.396|| I |
| Col Var | 14.158]| 3 4729 I |

Error 124.375 6 20.729

Total 171.438 15

<Figure 9.2.12> ANOVA table of Latin square design

[Practice 9.2.2]

To study the effect of packaging on the sales of a certain cereal, a researcher tries
three different packaging methods (treatments) at four different times of the week
(columns) in four different supermarket chains (rows). The variable of interest is daily
salse. The following table shows the results of the study. Do these data show a
significant difference in shoppers’ response to the different packaging methods? Let «
= 0.05.

Time of week
1 2 3 4

A(50) B(60) C(56) D(63)
B(59) c(52) D(51) A(57)
C(55) D(55) A(52) B(56)
D(58) A(58) B(55) c(61)

Store

A WN
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9.3 Analysis of Variance for Experiments of Two Factors

Definition

If there are two factors affecting the response variable, the analysis is called a
two-way analysis of variances. This technique is frequently used in experiments
such as engineering, medicine and agriculture. The response variable is observed
at each combination of levels of two factors (denoted as A and B). In general, it
is advisable to repeat at least two experiments at each combination of levels of
two factors, if possible, in order to increase the reliability of the experimental
results.

When data are obtained from repeated experiments at each factor level, the
two-way ANOVA tests whether the population means of each level of factor A
are the same (called the main effect test of the factor A) as the one-way
ANOVA, or tests whether the population means of each level of factor B are the
same (called the main effect test of the factor B). In addition, the two-way
ANOVA tests whether the effect of one factor A is influenced by each level of
the other factor B (called the interaction effect test). For example, in a chemical
process, if the higher the pressure when the temperature is low, the greater the
amount of products, and the lower the pressure when the temperature is high,
the greater the amount of products, the interaction effect exists between the two
factors of temperature and pressure. The interaction effect exists where the
effects of one factor change with changes in the level of another factor.

Main effect and Interaction effect

When data are obtained from repeated experiments at each factor level,
the two-way ANOVA tests whether the population means of each level of
factor A (called the main effect test of the factor A) are the same as the
one-way ANOVA, or tests whether the population means of each level of
factor B are the same (called the main effect test of the factor B).

The two-way ANOVA also tests whether the effect of one factor A is
influenced by each level of the other factor B (called the interaction effect
test).

Example 9.3.1

Table 9.3.1 shows the yield data of three repeated agricultural experiments for each
combination of four fertilizer levels and three rice types to investigate the yield of rice.

Table 9.3.1 Yield of rice by fertilizers and types of rice (unit kg)

. Types of rice
Fertil
ertilizer y 5 3
1 64,66,70 72,81,64 74,51,65
2 65,63,58 57,43,52 47,58,67
3 59,68,65 66,71,59 58,45,42
4 58,50,49 57,61,53 53,59,38

[] = eBook =» EX090301_YieldByRiceFertilzer.csv

1) Find the average yield for each combination of fertilizers and rice types.

2) Using TeStat; , draw a scatter plot with the rice types (1, 2 and 3) as X-axis and
the yield as Y-axis. Separate the color of dots in the scatter plot by the type of
fertilizer. Then, show the average of the combinations at each level on the scatter
plot and connect them with lines for each type of fertilizer to observe.

3) Test the main effects of fertilizers and rice types and test the interaction effect of
the two factors.

4) Using TeStaty , check the result of the two-way analysis of variance.
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1) For convenience, let us call the fertilizer as the factor A and the rice type as factor

Example 9.3.1 B. The averages of the rice yield for each level combination of two factors are

Answer shown in Table 9.3.2. Denote the k" rice yield, Yi and average g;“ of each

combination of j“l level of factor A and i level of factor B. Also, denote the
average of j" level of factor A as y_;, the average of " level of factor B as

@,;A,, and the global average as ¥ ...

Table 9.3.2 Average yield of rice by fertilizers and types of rice (unit kg)

Fertilizer Types of Rice (Factor A)

(Factor B) 1 > 3 Row Average
1 Y. = 66.7 Y, =723y, =633 .. =674
2 521- = 62.0 .522. = 50.7 @23, =573 1_/2 = 56.7
. Y1 = 64.0 yg =653 yg =483 Y3, = 59.2
4 Yup =523 Yy =570 Y5 = 500 Yo = 531

/f:eltrjg; Y. =613 y, =613 y, =548 Y. =59.1

2) To draw a scatter plot for the two-way ANOVA using [TeStat; , enter data as
<Figure 9.3.1> where the fertilizer is variable 1, the rice type is variable 2 and the
rice yield is variable 3.

File |EX0903017Y\e\dByRmeFertmzerc“ Editvar ||
i Vit By Cirag
3. Yield ~ | |1 Fertilizer ~ |
Selected data: Raw Data ) Select up 1o two groups
Selectedvar| V3 by Va2 V1, |["cancer |
Fertilizer  Rice Yield va
1 1 1 64
=

2 1 1 66

3 1 1 70

4 1 2 72

5 2 81

6 2 84

7 1 3 74

8 1 3 51

9 1 3 65

10 2 1 65

i1 X 63

12 2 1 58

13 2 2 57

14 2 2 43

15 2 2 52

16 2 3 47

17 2 3 58

18 2 3 67

19 3 1 59

20 1 68

21 1 65

22 2 66

23 2 7

24 3 2 59

25 3 3 58 -

4

<Figure 9.3.1> Data input for
two-way ANOVA in TeStat,

¢ In the variable selection box which appears by clicking the ANOVA icon on the
main menu, select 'Analysis Var' as Yield and 'By Group' as Rice and Fertilizer, then
the scatter plot of the yield by rice type will appear as in <Figure 9.3.2>. In
addition, the average vyields at each rice type by fertilizer are marked as dots
linking them with lines by fertilizer. In this graph, rice type 1 always yields more
than rice type 3 regardless of the fertilizer used. Rice type 2 varies in yield
depending on the type of fertilizer used, which shows the existence of interaction,
and the use of fertilizer 1 usually results in a high yield regardless of the rice
types.
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Example 9.3.1
Answer
(continued)

Factor A - Factor 8 Mean Graph

. Sactord : Festin
tevall (1)

o ° tavelz @)

e Laveld- o8

Factoe ¢ Rice  Laval1 (7) Lovel 2} Level3 (3}

<Figure 9.3.2> Yields by rice types and fertilizer types

3) Testing the factor A, which is to test the main effect of rice types, implies to test

the following null hypothesis.
H,: The average yields of the three rice types are the same.

If the null hypothesis is rejected, we conclude that the main effect of rice types
exists. In order to test the main effect of rice types, as in the one-way analysis of

variance, the sum of squared distances from each average vyield QJ of rice type j

to the overall average yield y .

SSA =12(61.3—y )* +12(61.3—y )* +12(54.8—y )? = 342.39

where the weight of 12 of each sum of squares is calculated by the number of
data for each rice type. Since there are 3 rice types, the degrees of freedom of
SSA is (3-1) and we call the sum of squares SSA divided by (3-1), SSA/(3—1),
is the mean squares of factor A, MSA.

Testing the factor B, which is to test the main effect of fertilizer types, implies to
test the following null hypothesis.

H,: The average yields of the four fertilizer types are the same.

If the null hypothesis is rejected, we conclude that the main effect of fertilizer
types exists. In order to test the main effect of fertilizer types, as in the one-way

analysis of variance, the sum of squared distances from each average yield y; of

fertilizer type ¢ to the overall average yield g_;,

SSB = 9(674—y_ )? +9(56.7—y_ )2 +9(59.2—y )? +9(53.1—y _)? = 1002.89

where the weight of 9 of each sum of squares is calculated by the number of data
for each fertilizer type. Since there are 4 fertilizer types, the degrees of freedom of
SSB is (4-1) and we call the sum of squares SSB divided by (4-1), SSB/(4—1),
is the mean squares of factor B, MSB.

Testing the interaction effect of rice and fertilizer (represented as factor AB) is to
test the following null hypothesis.

Hy: There is no interaction effect between rice type and fertilizer type.
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Example 9.3.1
Answer
(continued)

¢ If the null hypothesis is rejected, we conclude that there is an interaction effect
between rice types and fertilizer types. In order to test the interaction effect, the

sum of squared distances from each average yield §z7 subtracting the average yield
1_11 of fertilizer type ¢, subtracting the average yield 1_/7 of rice type j, adding the
overall average yield y .

SSAB = 3(66.7—y, —y, +y ) +3(723—y, —y, +y )’
+3(633 -y, —yy +y. ) +3(62.0—y, —y, +y.)?
BT, e ) BETE g, e e
+3(64.0—y, —y, +y )>+3(653—y, —y, +y )
+3(483—y; —y, +y )2 +3(523—y, —y, +y )’
+3(57.0—y, —y,+y ) +3(500—y, —ys+y. )’

= 588.94

where the weight of 3 of each sum of squares is calculated by the number of data
for each cell of rice and fertilizer type. The degrees of freedom of SSAB is
(3-1)(4-1) and we call the sum of squares SSAB divided by (3-1)(4-1),
SSAB/((3—1)(4—1)) is the mean squares of interaction AB, A/SAB.

It is not possible to test each effect immediately using these sum of squares, but
the error sum of squares should be calculated. In order to calculate the error sum
of squares, first we calculate the total sum of squares which is the sum of the
squared distances from each data to the overall average.

SST = (64—y )*+(66—y )*+(70—y )
+ o +(3—y )2+ (59—y )?+(38—y )* =3267.56

This total sum of squares can be proven mathematically to be the sum of the
other sums of squares as follows:

SST = SSA + SSB + SSAB + SSE
Therefore, the error sum of squares can be calculated as follows:
SSE = SST — (SSA + SSB + SSAB) = 1333.33

If the yields on each rice type or fertilizer type are assumed to be normal and the
variances are the same, the statistic which divides the each mean squares by the
error mean squares follows F distribution. Therefore, the main effects and
interaction effect can be tested using Z' distributions. If the interaction effect is

separated, we test them first. Testing results using the 5% significance level are as
follows:

(D Testing of the interaction effect on rice and fertilizer:

__SSAB
_ MSAB _ (3-1)(4—1) e
0 MSE SSE T
24

F 04005 = 291

Since Fjy < Fyoy.005 We conclude that there is no interaction. The interaction on
rice and fertilizer in <Figure 9.3.2> is so small which is not statistically significant
and it may due to other kind of random error. The calculated p-value of Fj=1.77
using TeStaty is 0.1488.
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Example 9.3.1

@ Testing of the main effect on rice types (Factor A):
Answer

SSA
(continued) MSA - B=1) _ 408
o~ MSE ~ ~SSE 7
T4
Fyo1:005 = 340

Since Fy < F,5,.005, We can not reject the null hypothesis that average yields of
rice types are the same. There is not enough evidence statistically that average
yields are different depending on rice types. The calculated p-value of £ =3.08
using TeStaty is 0.0644.

@ Testing of the main effect on fertilizer types (Factor B):

SSB
MSB (4-1) _
v = sE T s 002
24
Fy01:005 = 3.01

Since Fy > Fjy,.005 We reject the null hypothesis that average yields of fertilizer

types are the same. There is enough statistical evidence which shows that average
yields are different depending on fertilizer types. Since there is no interaction effect
by 1), we can conclude that fertilizer 1 produces more vyields than other fertilizer.
The calculated p-value of F{, =6.02 using FeStat; is 0.0033.

¢ The result of the two-way analysis of variances is as Table 9.3.3.

Table 9.3.3 two-way analysis of variance of yields by rice and fertilizer types

Factor SS Vi) @ EEEEES G AEED) F value p-value
quares freedom Squares

Rice Type 342.3889 2 171.1944 3.0815 0.0644

Feritlizer Type 1002.8889 3 334.2963 6.0173 0.0033

Interaction 588.9444 98.1574 1.7668 0.1488

Error 1333.3333 24 55.5556

Total 3267.5556 35

4) If you press the [ANOVA F-test] button in the options window below <Figure 9.3.2>
of feStat; , the two-dimensional table of means / standard deviations for each
level combination as in <Figure 9.3.3> and the two-way analysis of variance table as
in <Figure 9.3.4> will appear in the Log Area.

Two-
dimension
Statistics
CObservation Factor 8 Factor B Factor & Fectak
Mean {Fertilizar) (Fertilizer) {Fertilizer) = ] “T__ i
Std Dev Leveli (1) Leyvelz (2) Leveld (4) bevelajiotal
o 3 3 3 12
e 66,667 64000 81250
Y 3.055 4583 6640
s 3 5 12
Recain B 72333 0667 65333 61333
HeElZ 2 4505 7.095 6028 10.263
: 3 3 12
s 63333 57333 48333 54750
e 11530 10,017 23505 10788
- s ] 3 3 36
Eactor
i 67.444 56,667 50222 53111 59111
s 8328 8,078 9972 6990 0662
Missing g
Observations

<Figure 9.3.3> Two dimensional mean / standard deviation

table
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Example 9.3.1
Answer
. Analysis of
(continued) Variance
Factor ;:L‘;_zi r'rdeeegc'ri Mean Sguares F value p value
Factor A (Rice) 342388 2 171184 3.082 00644
Factor B (Fertilizer) 1002.882 3 334298 6017 00033
Interaction 588.944 [ 98157 1767 04828
Errar 1333.333 24 53.356
Total 3267.556 35
<Figure 9.3.4> two-way analysis of variance table

* let's generalize the theory of the two-way analysis of variance discussed in the
example above. Let Y, be the random variable representing the k™ observation
at the i™ level of factor A, which has a number of levels, and ;" level of
factor B, which has b number of levels. A statistical model of the two-way
analysis of variances is as follows:

Yp=uto,+8;+vteu i=120a:7=12,b; k=12,
w : total mean

o, : effect of i level of factor A

3, : effect of j" level of factor B

7;;  interaction effect of i™ level of factor A and ;™ level of factor B

€., . eror terms which are independent and follow N(0,52).

ijk

Assume that experiments are repeated r times equally at the i*" level of factor A
and ;™ level of factor B. Therefore, the total number of observations is n=abr.
¢ The total sum of squared distances from each observation to the total mean Y _

can be partitioned as following sum of squares similar to the one-way analysis of
variance.

a b r .
Total sum of squares: SST = ZZE(Y@*Y.,,)} . degrees of freedom: n—1

i=1j=1k=1

a —_— J—
Fator A sum of squares: SSA = er(Yi“—Y )2 : degrees of freedom: a—1
i=1

b - - b
Factor B sum of squares: SSB = ar),(Y; —V )* : degrees of freedom: b—1
i=1
a_ b __ _ _ _
Interaction sum of squares: SSAB = FEZ(YU:*Y;,, —Y;+Y_)*: degrees of
i=1j=1

freedom:  (a—1)(b—1)
a b _r _
Error sum of squares: SSE = D>, > (Y —Y

i=1lj=1k=1

ijA)Z : degrees of freedom: n—ab

Partition of Sum of Squares and degrees of freedom

Sum of Squares: SST = SSA + SSB + SSAB + SSE
degrees of freedom: (n—1) = (a—1) + (b—1) + (a—1)(b—1) + (n—ab)
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* The two-way analysis of variance is summarized as Table 9.3.4.

Table 9.3.4 two-way analysis of variance table

Sum of Degree of Mean Squares F value
Factor
Squares Freedom
Factor A SSA a—1 MSA = SSA/(a—1) F, = MSA/MSE
Factor B SSB b—1 MSB = SSB/(b—1) F, = MSB/MSE
Interaction ssAB (a—1)(b—1) MSAB = SSAB/((a—1)(b—1)) F, = MSAB/MSE
Error SSE n—ab MSE = SSE/(n—ab)
Total SST n—1

Two-way analysis of variance without repetition of experiments

If there is no repeated observation at each level combination of two
factors, the interaction effect can not be estimated and the row of
interaction factor is deleted from the above two-way ANOVA table. In
this case, the analysis of variance table is the same as the randomized
block design as Table 9.2.3.

¢ Testing hypothesis for the main effects and interaction effect of factor A and
factor B are as follows. If the interaction effect is separated, it is reasonable to
test the interaction effect first. This is because, depending on the significance of
the interaction effect, the method of interpreting the result of the main effect
test of each factor can be different.

1) F Test for the interaction effect:

Hy:v,;=0,i=12,a; j=1,2,-+-,b
If 7, =MSAB/MSE > Flo 1)1 n_u:ar then reject A,

2) F Test for the main effect of factor A:

[{();a]:a2: :aa:()
If 7, = MSA/MSE > Fl, 1), a.q then reject H,

3) F Test for the main effect of factor B:

Hy:B=8==5=0
lf F2 :MSB/MSE > F})—L, n—ab;a’ then rejed ]—‘[U

( TeStat; calculates the p-value for each of these tests and tests them using it.
That is, for each test, if the p-value is less than the significance level, the null
hypothesis #, is rejected.)

* If the test for interaction effect is not significant, a test of the main effects of
each factor can be performed to test significant differences between levels.
However, if there is a significant interaction effect, the test for the main effects
of each factor is meaningless, so an analysis should be made on which level
combinations of factors show differences in the means.
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* If you conclude that significant differences between the levels of a factor as in
the one-way analysis of variance exist there, you can compare confidence intervals
at each level to see which level of the differences appears. And a residual
analysis is necessary to investigate the validity of the assumption.

[Practice 9.3.1] The result of an experiment at a production plant of an electronic component to
e investigate the life of the product due to changes in temperature (7}, 7;) and

humidity (O,, O,) is as follows. Analyze data using the analysis of variance with 5%
significance level.

- (Unit: Time) O, 0,
(5] S yiaei [m]

- *;; 6.29 5.95
AR T 6.38 6.05
i 6.25 5.89

5.80 6.32
= d T, 5.92 6.44
5.78 6.29

[-] = eBook = PR090301_LifeByTemperatureHumidity.csv

Design of experiments for the two-way analysis of variances

Even in the two-way analysis of variance, obtaining sample data at each
level of two factors in engineering or in agriculture can be influenced by
other factors and should be careful in sampling. In order to accurately
identify the differences that may exist between each level of a factor, it
is advisable to make as few as possible influences from other factors.
One of the most commonly used methods of doing this is completely
randomized design which makes the entire experiments random. There
are many other experimental design methods, and for more information,
refer to the references to the experimental design of several factors.
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9.1

9.2

9.3

94

Exercise
Complete the following ANOVA table.
Factor SS9 df MS F' ratio
Treatment 154.9199 4
Error _
Total 200.4773 39

Answer the following questions based on this ANOVA table.

Factor SS df MS F’ ratio
Treatment 5.05835 2 2.52917 1.0438
Error 65.42090 27 2.4230

1) How many levels of treatment are compared?

2) How many total number of observations are there?

3) Can you conclude that the levels of treatment are significantly different with the
5% significance level? Why?

In order to test customers' responses to new products, four different exhibition methods (A, B, C
and D) were used by a company. Each exhibition method was used in nine stores by selecting 36
stores that met the company’s criteria. The total sales for the weekend are shown in the following
table.

Exhibition Method ‘ Sales for the weekend in 9 stones (unit: 1000USD)
A 5 6 7 7 8 6 7 7 6
B 2 2 2 3 3 2 3 3 2
C 2 2 3 3 2 2 2 3 3
D 6 6 7 8 8 8 6 6 6

1) Draw a scatter plot of sales (y axis) and exhibition method (x axis). Mark the
average sales of each exhibition method and connect them with a line.

2) Test that the sales by each exhibition method are different in the amount of sales
with the 5% significance level. Can you conclude that one of the exhibition
methods shows significant effect on sales?

The following table shows mileages in km per liter obtained from experiments to compare three
brands of gasoline. In this experiment, seven cars of the same type were used in a similar
situation to reduce the variation of the car.

Gasoline mileage in km / liter
A 14 19 19 16 15 17 20
B 20 21 18 20 19 19 18
C 20 26 23 24 23 25 23

1) Calculate the average mileages of each gasoline brand. Draw a scatter plot of gas
milage (y axis) and gasoline brand (x axis) to compare.
2) From this data, test whether there are differences between gasoline brands for gas
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milage with the 5% significance level.

9.5 The result of a survey on job satisfaction of three companies (A, B, and C) is as follows. Test
whether the averages of job satisfaction of the three companies are different with the 5%

significance level.

Company Job satisfaction score
A 69 67 65 59 68 61 66
B 56 63 55 59 52 57
C 71 72 70 68 74

9.6 Psychologists were asked to investigate the job satisfaction of salespeople in three companies: A,
B and C. Ten salespeople were randomly selected from each company and a test to measure the
job satisfaction was conducted. Test scores are as follows. From this data, can we claim that the
average scores of the job satisfaction of three companies are different with the significance level

of 0.05?
Company Job satisfaction score
A 67 65 59 59 58 61 66 53 51 64
B 66 68 55 59 61 66 62 65 64 74
C 87 80 67 89 80 84 78 65 72 85

9.7 An advertising agency experimented to find out the effects of various forms (A, B, C, D and E) of
TV advertising. Fifty television viewers were shown five forms of TV commercials for a cold
medicine in random order one by one. The effect of advertising after viewing was measured and
recorded as follows. Test an appropriate hypothesis with the 5% significance level.

Forms of TV Advertising

A B C D E
20 23 21 28 27 22 33 34 25 33 29 31 49 41 M1
23 26 24 28 23 29 26 27 33 29 27 25 39 41 48
26 23 20 27 25 28 25 32 25 26 26 33 43 43 46
24 21 34 32 35

9.8 The following is the result of an agronomist's survey of the yield of four varieties of wheat by using
the randomized block design of three cultivated areas (block). Test whether the mean yields of the
four wheats are the same or not with the 5% significance level.

Cultivated Area Average
Wheat Type 1 2 3 (v;)
A 60 61 56 59
B 59 52 51 54
C 55 55 52 54
D 58 58 55 57

9.9 Answer the following questions based on the following ANOVA table.
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Factor SS df MS F value p-value
A 12.3152 2 6.1575 29.4021 < 0.005
B 19.7844 3 6.5948 31.4898 < 0.005
AB 8.9416 6 1.4902 7.1159 < 0.005
Error 10.0525 48 0.2094

Total 51.0938 59

1) What method of analysis was used?
2) What conclusions can be obtained from the above analysis table? The significance

level is 0.05.

9.10 Research was conducted to compare the job satisfaction of workers in the assembly process with
different working conditions. Another concern is the relationship between the job satisfaction and
years of service. Observers would like to investigate the interaction effect between the years of
service and working conditions. The following table shows the level of the job satisfaction obtained
from the survey. Analyze the data using an appropriate methodology.

Working condition

Years of service Good Fair Bad
12 10 8
15 10 7

<5 15 9 7
14 10 8
12 9 6
12 10 10
14 10 11
5-10 12 14 12
10 14 10
11 10 14
9 10 12
10 11 14
11 or more 9 10 15

9 10 15
10 12 15

9.11 The following table shows the degree of stress in the work and the level of anxiety among 27
workers classified as years of service. Analyze data using the analysis of variance with the 5%

significance level.

Factor A Job-induced pressure (Factor B)
Years of service Good Fair Bad
25 18 17
<5 28 23 24
22 19 19
28 16 18
5-10 32 24 22
30 20 20
25 14 10
11 or more 35 16 8
30 15 12
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9.12 A fertilizer manufacturer hired a research team to study the yields of three grain seeds (A, B, C)
and three types of fertilizer (1, 2, 3). Three grain seeds in combination of three types of fertilizer
were used and the experiment were repeated three times at each combination of treatments. Each
combination of treatments was randomly assigned to 27 different regions. Analyze data using the
analysis of variance with the 5% significance level.

Fertilizer type

Seed type 1 2 3
5 8 10

A 8 8 9
7 10 10

6 10 15

B 8 12 14
6 11 14

7 12 16

C 8 12 10
10 14 18

9.13 The result of an experiment at a production plant of an electronic component to investigate the life
of the product due to changes in temperature (73, 7;) and humidity (O,, O,) is as follows. Analyze
data using the analysis of variance with the 5% significance level.

(Unit: Time) O, 0,
6.29 5.95

T 6.38 6.05
6.25 5.89

5.80 6.32

T, 5.92 6.44
5.78 6.29

9.14 The result of a fertilizer manufacturer's experiment with the production of soybeans on two seeds
using three types of fertilizer (A, B, and C) is as follows. Each fertilizer and seed were tested four
times. Analyze data using the analysis of variance with the 5% significance level.

Fertilizer
A B C
5 8 10
8 8 12
Seed 1 7 10 10
6 10 10
8 12 14
6 11 16
Seed 2 8 12 16
10 14 18
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9.1

9.2

9.3

94

9.5

9.6

9.7

9.8

Multiple Choice Exercise

Who first announced the ANOVA method?

(D Laspeyres @ Paasche
@ Fisher @ Edgeworth

What are the abbreviation of the analysis of variance?

@ ANOVA @ ¢
® F @ ¥

Which areas are not the area of application for the analysis of variance?

D marketing survey @ quality control
@ economy forecasting @ medical experiment

Which sampling distribution is used for the analysis of variance?

@ ¢t distribution @ F distribution
@ x? distribution @ Normal distribution

Which is the correct process for the one-way ANOVA?

. Calculate Total SS, Treatment SS, Error SS

. Set the hypothesis

. Test the hypothesis

. Calculate the variance ration in the ANOVA table

O O O T

. Find the value in the F distribution table

@Da—>b—=>c—>d—e @b—>d—>e—a—>c
@®@b—a—>d—>e—c @©b—>e—>d—a—c

Which is the correct relationship between the total sum of squares (SST), between sum of squares
(SSB), error sum of squares (SSE)?

SSB - SSE
SSB * SSE

SSB + SSE @ SST
SSE - SSB @ SST

@ SST
@ SST

If £, ,0005 = 2:87 and the observed F ratio is 6.90 in the ANOVA table, what is your conclusion
with the 5% significance level?

@ significantly different @ no significant difference
@ very similar @ unknown

Which is not appeared in the analysis of variance table?

@D sum of squares @ F ratio
@ degrees of freedom @ standard deviation
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9.9 What is the name of variable which effects response variable in the experimental design?

D cause element @ independent variable
@ dependent variable @ factor

9.10 In order to compare the fuel mileage of three types of cars, three drivers would like to drive cars,
but fuel mileage may be affected by the driver. What is the name of variable like drivers?

@ block variable @ independent variable
@ dependent variable @ factor

9.11 When we compare the fuel mileage of three types of cars, which experimental desing is used to
reduce the effect of drivers?

bvexzD completely randomized design @ latin square method
@ two-way ANOVA @ randomized block design

9.12 What is called the effect of a factor A that varies depending on the level of the factor B?

D main effect of factor A @ main effect of factor B
@ two-way ANOVA @ interaction effect
(Answers)

910,920, 9303,94 0,950, 96 ©, 97 ©, 98 @ 99 @, 910 O,
911 @, 912 ®



