
9
Testing Hypothesis for 

Several Population Means

  
  

SECTIONS

9.1 Analysis of Variance for 
Experiments of Single Factor

  9.1.1 Multiple Comparison 
  9.1.2 Residual Analysis 

9.2 Design of Experiments for Sampling

  9.2.1 Completely Randomized Design 
  9.2.2 Randomized Block Design 

9.3 Analysis of Variance for 
Experiments of Two Factors

CHAPTER OBJECTIVES

In testing hypothesis of the population mean 
described in chapters 7 and 8, the number of 
populations was one or two. However, many 
cases are encountered where there are three 
or more population means to compare. 
The analysis of variance (ANOVA) is used to 
test whether several population means are 
equal or not. The ANOVA was first published 
by British statistician R. A. Fisher as a test 
method applied to the study of agriculture, but 
today its principles are applied in many 
experimental sciences, including economics, 
business administration, psychology and 
medicine.
In section 9.1, the one-way ANOVA for single 
factor is introduced. In section 9.2, experimental 
designs for experiments are introduced. In 
section 9.2, the two-way ANOVA for two factors 
experiments is introduced.
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9.1 Analysis of Variance for Experiments of Single Factor

Ÿ In section 8.1, we discussed how to compare means of two populations using the 
testing hypothesis. This chapter discusses how to compare means of several 
populations. There are many examples of comparing means of several populations 
as follows: 

-  Are average hours of library usage for each grade the same?
-  Are yields of three different rice seeds equal?
-  In a chemical reaction, are response rates the same at four different 

temperatures? 
-  Are average monthly wages of college graduates the same at three different 

cities? 

Ÿ The group variable used to distinguish groups of the population, such as the 
grade or the rice, is called a factor. 

Definition Factor
The group variable used to distinguish groups of the population is called 
a factor.   

Ÿ This section describes the one-way analysis of variance (ANOVA) which compares 
population means when there is a single factor. Section 9.2 describes how the 
experiment is designed to extract sample data. Section 9.3 describes the two-way  
ANOVA to compare several population means when there are two factors. Let's 
take a look at the following example.

Example 9.1.1
In order to compare the English proficiency of each grade at a university, samples were 
randomly selected from each grade to take the same English test, and data are as in 
Table 9.1.1. The right column is a calculation of the average ⋅, ⋅, ⋅, ⋅ for 
each grade.

Grade English Proficiency Score Average

1
2
3
4

 81    75    69    90    72    83 
 65    80    73    79    81    69 
 72    67    62    76    80       
 89    94    79    88             

⋅= 78.3
⋅= 74.5
⋅= 71.4
⋅= 87.5

Table 9.1.1  English Proficiency Score by Grade

 ⇨ eBook ⇨ EX090101_EnglishScoreByGrade.csv. 

1) Using『eStat』, draw a dot graph of test scores for each grade and compare their 
averages.

2) We want to test a hypothesis whether average scores of each grade are the same 
or not. Set up a null hypothesis and an alternative hypothesis.

3) Apply the one-way analysis of variances to test the hypothesis in question 2).
4) Use『eStat』to check the result of the ANOVA test.

Example 9.1.1
Answer

1) If you draw a dot graph of English scores by each grade, you can see whether 
scores of each grade are similar. If you plot the 95% confidence interval of the 
population mean studied in Chapter 6 on each dot graph, you can see a more 
detailed comparison. 
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Example 9.1.1
Answer

(continued)

w In order to draw a dot graph with data shown in Table 9.1.1 using 『eStat』, 
enter data on the sheet and set variable names to 'Grade' and 'Score' as shown in 
<Figure 9.1.1>. In the variable selection box which appears by clicking the ANOVA 
icon  on the main menu of『eStat』, select 'Analysis Var' as ‘Score’ and 'By 
Group' as ‘Grade’. The dot graph of English scores by each grade and the 95% 
confidence interval are displayed as shown in <Figure 9.1.2>.

<Figure 9.1.1>
 『eStat』data input for 

ANOVA

 

 

<Figure 9.1.2> 95% Confidence Interval by grade

w To review the normality of the data, pressing the [Histogram] button under this 
graph (<Figure 9.1.3>) will draw the histogram and normal distribution together, as 
shown in <Figure 9.1.4>.
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Example 9.1.1
Answer

(continued)

<Figure 9.1.3> Options of ANOVA

<Figure 9.1.4> Histogram of English score by grade

w <Figure 9.1.2> shows sample means as = 78.3, = 74.5, = 71.4, = 87.5. 
The sample mean of the 4th grade is relatively larger than the other three grades 
and  and  are similar. Therefore, it can be expected that the population 
mean  and  would be the same and  will differ from three other 
population means. However, we need to test whether this difference by sample 
means is statistically significant.

2) In this example, the null hypothesis to test is that population means of English 
scores of the four grades are all the same, and the alternative hypothesis is that 
population means of the English scores are not the same. In other words, if 
    are the population means of English scores for each grade, the 
hypothesis to test can be written as follows, 

   Null hypothesis :       

   Alternative hypothesis : at least one pair of   is not the same

3) A measure that can be considered first as a basis for testing differences in multiple 
sample means would be the distance from each mean to the overall mean. In 
other words, if the overall sample mean for all 21 students is expressed as ·· , the 
squared distance from each sample mean to the overall mean is as follows when 
the number of samples in each grade is weighted. This squared distance is called 
the between sum of squares (SSB) or the treatment sum of squares (SSTr). 

 SSTr =  ·· 
   ·· 

   ·· 
   ·· 

 = 643.633

   If the squared distance SSTr is close to zero, all sample means of English scores for 
four grades are similar.
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Example 9.1.1
Answer

(continued)

w However, this treatment sum of squares can be larger if the number of populations 
increases. It requires modification to become a test statistic to determine whether 
several population means are equal. The squared distance from each observation to 
its sample mean of the grade is called the within sum of squares (SSW) or the 
error sum of squares (SSE) as defined below.

   SSE =  · 
 · 

   · 


           · 
 · 

   · 


           · 
 · 

   · 


           · 
 · 

   · 
 = 839.033

w If population distributions of English scores in each grade follow normal distributions 
and their variances are the same, the following test statistic has the  
distribution.
 

     



SSE



SSTr

   This statistic can be used to test whether population English scores of four grades 
are the same or not. In the test statistic, the numerator SSTr  is called 
the treatment mean square (MSTr) which implies a variance between grade means. 
The denominator SSE  is called the error mean square (MSE) which 
implies a variance within each grade. Thus, the above test statistics are based on 
the ratio of two variances which is why the test of multiple population means is 
called an analysis of variance (ANOVA).

w Calculated test statistic which is the observed F value, , using data of English 
scores for each grade is as follows:

     



SSE



SSTr

 









 

   Since    = 3.20, the null hypothesis that population means of English scores 
of each grade are the same,         , is rejected at the 5% 
significance level. In other words, there is a difference in population means of 
English scores of each grade. 

w The following ANOVA table provides a single view of the above calculation.

Factor  Sum of Squares    Degree       Mean Squares          F value
                  of freedom     

Treatment
Error

 SSTr= 643.633       4-1         MSTr = 643.633/3      Fo = 4.347
 SSE = 839.033      21-4         MSE = 839.033/17

Total  SST =1482.666       20 

4) In <Figure 9.1.3>, if you select the significance level of 5%, confidence level of 95%, 
and click [ANOVA F test] button, a graph showing the location of the test statistic 
in the F distribution is appeared as shown in <Figure 9.1.5>. Also, in the Log Area, 
the mean and confidence interval tables and test result for each grade are 
appeared as in <Figure 9.1.6>.
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Example 9.1.1
Answer

(continued)

<Figure 9.1.5> 『eStat』 ANOVA F test

<Figure 9.1.6> 『eStat』Basic Statistics and ANOVA table

w The analysis of variance is also possible using『eStatU』. Entering the data as in 
<Figure 9.1.7> and clicking the [Execute] button will have the same result as in 
<Figure 9.1.5>.
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Example 9.1.1
Answer

(continued)

   

<Figure 9.1.7> ANOVA data input at『eStatU』

 

Ÿ The above example refers to two variables, the English score and grade. The 
variable such as the English score is called as an analysis variable or a response 
variable. The response variable is mostly a continuous variable. The variable used 
to distinguish populations such as the grade is called a group variable or a factor 
variable which is mostly a categorical variable. Each value of a factor variable Is 
called a level of the factor and the number of these levels is the number of 
populations to be compared. In the above example, the factor has four levels, 1st, 
2nd, 3rd and 4th grade. The term 'response' or 'factor' is originated to analyze data 
through experiments in engineering, agriculture, medicine and pharmacy. 

Ÿ The analysis of variance method that examines the effect of single factor on the 
response variable is called the one-way ANOVA. Table 9.1.2 shows the typical data 
structure of the one-way ANOVA when the number of levels of a factor is  and 
the numbers of observation at each level are   ⋯ .

Factor Observed values of sample Average

Level 1         　⋯ 　  

 ·

Level 2         　⋯ 　  

 ·

⋯   ⋯    ⋯      　  　⋯ ⋯

Level          　⋯ 　  

 ·

Table 9.1.2  Notation of the one-way ANOVA

Ÿ Statistical model for the one-way analysis of variance is given as follows: 

    

         ⋯    ⋯

 represents the   observed value of the response variable for the   level of 
factor. The population mean of the   level, , is represented as   where  
is the mean of entire population and   is the effect of   level for the 
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response variable.  denotes an error term of the   observation for the    
level and the all error terms are assumed independent of each other and follow 
the same normal distribution with the mean 0 and variance .   

Ÿ The error term  is a random variable in the response variable due to reasons 
other than levels of the factor. For example, in the English score example, 
differences in English performance for each grade can be caused by other 
variables besides the variables of grade, such as individual study hours, gender 
and IQ. However, by assuming that these variations are relatively small compared 
to variations due to differences in grade, the error term can be interpreted as 
the sum of these various reasons. 

Ÿ The hypothesis to test can be represented using   instead of   as follows: 

Null hypothesis       ⋯    

Alternative hypothesis   At least one pair of   is not equal to 0

In order to test the hypothesis, the analysis of variance table as Table 9.1.3 is 
used. 

Factor  Sum of   Degree of      Mean Squares            F value
 Squares   freedom  

Treatment
Error

   SSTr              MSTr = SSTr / ()     = MSTr/MSE
   SSE               MSE  = SSE / ()

Total    SST        

Table 9.1.3  Analysis of variance table of the one-way ANOVA

                  (
  



)

Ÿ The three sum of squares for the analysis of variances can be described as 
follows. For an explanation, first define the following statistics:

·   Mean of observations at the   level 
··   Mean of total observations 

SST 
i 

k


j 

ni

Y ij Y ·· 
  : 

The sum of squared distances between observed values of the response variable 
and the mean of total observations is called the total sum of squares (SST). 

SSTr 
i 

k


j 

ni

Y i· Y ·· 
  : 

The sum of squared distances between the mean of each level and the mean of 
total observations is called the treatment sum of squares (SSTr). It represents the 
variation between level means. 

SSE 
i 

k


j 

ni

Y ij Y i· 
  : 

The sum of squared distances between observations of the   level and the 
mean of the   level which is referred to as 'within variation’, and is called the 
error sum of squares (SSE).
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Ÿ The degree of freedom of each sum of squares is determined by the following 
logic: The SST consists of  number of squares, 


, but  should be 

calculated first, before SST is calculated, and Hence, the degree of freedom of SST 
is  . The SSE consists of  number of squares,  · 

, but the  
number of values, ⋅ ⋯ ⋅ should be calculated first, before SSE is 
calculated, and Hence, the degree of freedom of SSE is  . The degree of 
freedom of SSTr is calculated as the degree of freedom of SST minus the degree 
of freedom of SSE which is  .

Ÿ In the one-way analysis of variance, the following facts are always established:

Partition of sum of squares and degrees of freedom
   Sum of squares:       SST  SSE  SSTr

   Degrees of freedom:       

 
Ÿ The sum of squares divided by the corresponding degrees of freedom is referred 

to as the mean squares and Table 9.1.3 defines the treatment mean squares 
(MSTr) and error mean squares (MSE).  As in the meaning of the sum of squares, 
the treatment mean square implies the average variation between each level of 
the factor, and the error mean square implies the average variation within 
observations in each level. Therefore, if MSTr is relatively much larger than MSE, 
we can conclude that the population means of each level, , are not the same. 
So by what criteria can you say it is relatively much larger?

Ÿ The calculated   value, , in the last column of the ANOVA table represents the 
relative size of MSTr and MSE. If the assumptions of  based on statistical 
theory are satisfied, and if the null hypothesis       ⋯     is 
true, then the below test statistic follows a F distribution with degrees of 
freedoms   and  . 

 

 MSE

MSTr
SSE nk

SSTrk

Ÿ Therefore, when the significance level is   for a test, if the calculated value  
is greater than the value of    , then the null hypothesis is rejected. That 
is, it is determined that the population means of each factor level are not all the 
same. 

One-way analysis of variance  test
   Null hypothesis        ⋯    

   Alternative hypothesis   At least one  is not equal to 0 

   Test Statistic    MSE

MSTr

   Decision Rule If      , then reject   

(Note: 『eStat』calculates the -value of this test. Hence, if the -value is smaller 
than the significance level  , then reject the null hypothesis. )
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[Practice 9.1.1] (Plant Growth by Condition)
Results from an experiment to compare yields (as measured by dried weight of plants) 
obtained under a control (leveled ‘ctrl’) and two different treatment conditions (leveled 
‘trt1’ and ‘trt2’). The weight data with 30 observations on control and two treatments 
(‘crtl’, ‘trt1’, ‘trt2’), are saved at the following location of 『eStat』. Answer the 
following questions using『eStat』,

 ⇨ eBook ⇨ PR090101_Rdatasets_PlantGrowth.csv

1) Draw a dot graph of weights for each control and treatments. 
2) Test a hypothesis whether the weights are the same or not. Use the 5% significance 

level. 

9.1.1 multiple comparisons 

Ÿ If the F test of the one-way ANOVA does not show a significant difference 
between each level of the factor, it can be concluded that there is no difference 
between each level of populations. However, if you conclude that there are 
significant differences between each level as shown in [Example 9.1.1], you need 
to examine which levels are different from each other. 

Ÿ The analysis of differences between population means after ANOVA requires 
several tests for the mean difference to be performed simultaneously and it is 
called as the multiple comparisons. The hypothesis for the multiple comparisons to 
test whether the level means,   and , are equal is as follows:

   ,   ≠       ;      

It means that there are  tests to be done simultaneously for the multiple 
comparisons if there are  levels of the factor. 

Ÿ There are many multiple comparisons tests, but Tukey's Honestly Significant 
Difference (HSD) test is most commonly used. The statistic for Tukey's HSD test to 
compare means   and  is the sample mean difference ⋅  ⋅ and the 
decision rule to test     is as follows:

If       , then reject 

where HSDij  q k nk  ⋅





ni


nj


MSE ,

  and  are the number of samples (repetitions) in   level and   level, MSE is the 
mean squared error,     is the right tail 100×  percentile of the studentized range 
distribution with parameter  and  degrees of freedom. (It can be found at『eStatU』 
(<Figure 9.1.8>)).



9.1 Analysis of Variance for Experiments of Single Factor / 11


<Figure 9.1.8>『eStatU』HSD percentile table

    

Example 9.1.2 In [Example 9.1.1], the analysis variance of English scores by the grade concluded that 
the null hypothesis was rejected and the average English scores for each grade were 
not all the same. Now let's apply the multiple comparisons to check where the 
differences exist among each school grade with the significance level of 5%. Use 
『eStat』 to check the result.

Answer w The hypothesis of the multiple comparisons is    ,     ≠  and 
the decision rule is as follows:  

   ‘If    
   , then reject  .’

   Since there are four school grades (  ),  = 6 multiple comparisons are 
possible as follows. The 5 percentile from the right tail of HSD distribution which is 
used to test is            .

1)        ≠

                

    HSD  q k nk  ⋅





n


n


MSE

              ⋅











  = 11.530

    Therefore, accept .

2)       ≠  
             

    HSD  q k nk  ⋅





n


n


MSE

             ⋅








 


  = 12.092

    Therefore, accept .
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Example 9.1.2
Answer

(continued)
3)       ≠  
             

    HSD  q k nk  ⋅





n


n


MSE     

              ⋅








 


 

    Therefore, accept .

4)       ≠  
              

    HSD  q k nk  ⋅





n


n


MSE

             ⋅











  = 12.092

    Therefore, accept .

5)       ≠  
              

    HSD  qk nk  ⋅





n


n


MSE

              ⋅








 


  = 12.891

    Therefore, reject .

6)       ≠  
                

    HSD  q k nk  ⋅





n


n


MSE

             ⋅











  = 13.396

    Therefore, reject .

w The result of the above multiple comparisons shows that there is a difference 
between  and , and  as can be seen in the dot graph with average in 
<Figure 9.1.1>. It also shows that  has no significant difference from other 
means. 

w If you click [Multiple Comparison] in the options of the ANOVA as in <Figure 9.1.3>, 
『eStat』shows the result of Tukey's multiple comparisons as shown in <Figure 
9.1.9>. 『eStat』also shows the mean difference and 95% HSD value for the sample 
mean combination after rearranging levels of rows and columns in ascending order 
of the sample means. 

w The next table shows that, if the HSD test result for the combination of the two 
levels is significant with the 5% significance level, then * will be marked and if it is 
significant with the 1% significance level, then ** will be marked, if it is not 
significant, then the cell is left blank.
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Example 9.1.2
Answer

(continued)

<Figure 9.1.9> HSD Multiple Comarisons

w For the analysis of mean differences, confidence intervals for each level may also 
be used. <Figure 9.1.2> shows the 95% confidence interval for the mean for each 
level. This confidence interval is created using the formula described in Chapter 6, 
but the only difference is that the estimate of the variance for the error, , is  
the pooled variance using overall observations rather than the sample variance of 
observed values at each level. In the ANOVA table, MSE is the pooled variance. 

w In post-analysis using these confidence intervals, there is a difference between 
means if the confidence intervals are not overlapped, so the same conclusion can 
be obtained as in the previous HSD test.  

[Practice 9.1.2] By using the data of [Practice 9.1.1] 

 ⇨ eBook ⇨ PR090101_Rdatasets_PlantGrowth.csv

apply the multiple comparisons to check where differences exist among Control and 
two treatments with the significance level of 5%. Use『eStat』 .

9.1.2 Residual Analysis 

Ÿ Another statistical analysis related to the ANOVA is a residual analysis. Various 
hypothesis tests in the ANOVA are performed on the condition that assumptions 
hold about the error term . Assumptions about error terms include 
independence ( are independent of each other), homoscedasticity (each variance 
of  is constant as ), normality (each  is normally distributed), etc. The 



14   /  Chapter 9 Testing Hypothesis for Several Population Means


validity of these assumptions should always be investigated. However, since  can 
not be observed, the residual as the estimate of  is used to check the 
assumptions. The residuals in the ANOVA are defined as the deviations used in 
the equation of the error sum of squares, for example,    in the 
one-way analysis of variance.

Example 9.1.3 In [Example 9.1.1] of English score comparison by the grade, apply the residual analysis 
using『eStat』. 

Answer w If you click on [Standardized Residual Plot] of the ANOVA option in <Figure 9.1.3>, 
a scatter plot of residuals versus fitted values appears as shown in <Figure 9.1.10>. 
In this scatter plot, if the residuals show no unusual tendency around zero and 
appear randomly, then the assumptions of independence and homoscedasticity are 
valid. There is no unusual tendency in this scatter plot. Normality of the residuals 
can be checked by drawing the histogram of residuals. 

<Figure 9.1.10>  Residual plot of the ANOVA

[Practice 9.1.3]

 

By using the data of [Practice 9.1.1] 

 ⇨ eBook ⇨ PR090101_Rdatasets_PlantGrowth.csv

apply the residual analysis using『eStat』. 

9.2 Design of Experiments for Sampling

Ÿ Data such as English scores by the grade in [Example 9.1.1] are not so difficult to 
collect samples from each of the grade population. However, obtaining samples 
through experiments such as engineering, medicine, or agriculture are often 
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difficult to collect a large number of samples due to the influence of many other 
external factors, and should be very cautious about sampling. This section 
discusses how to design experiments for collecting small number of data from 
experiments. 

9.2.1 Completely Randomized Design 

Ÿ In order to identify the differences accurately that may exist among each level of 
a factor, you should design experiments such as little influence from other factors. 
One method to do this is to make the whole experiments random. For example, 
consider experiments to compare a fuel mileage per one liter of gasoline for 
three types of cars A, B and C. We want to measure the fuel mileage for five 
different cars of each type. One driver may try to drive all 15 cars. However, if 
only five cars can be measured per day, the measurement will take place over a 
total of three days. In this case, changes in daily weather, wind speed and wind 
direction can influence the fuel mileage which makes it a question of which car 
should be measured for fuel mileage on each day. 

Ÿ If five drivers (1, 2, 3, 4, 5) plan to drive the car to measure the fuel mileage of 
all cars a day, the fuel mileage of the car may be affected by the driver. One 
solution would be to allocate 15 cars randomly to five drivers and then to 
randomize the sequence of experiments as well. For example, each car is 
numbered from 1 to 15 and then, the experiment of the fuel mileage is 
conducted in the order of numbers that come out using drawing a random 
number. Such an experiment would reduce the likelihood of differences caused by 
external factors such as the driver, daily wind speed and wind direction, because 
randomized experiments make all external factors equally affecting the all 
observed measurement values. This method of experiments is called a completely 
randomized design of experiments. Table 9.2.1 shows an example allocation of 
experiments by this method. Symbols A, B and C represent the three types of 
cars.

Driver   1      2      3      4     5

Car Type
  B      A      B      C     A
  B      C      A      A     C
  C      B      A      B     C

Table 9.2.1 Example of completely randomized design 
of experiments

Ÿ In general, in order to achieve the purpose of the analysis of variance, it is 
necessary to plan experiments thoroughly in advance for obtaining data properly. 
The completely randomized design method explained as above is studied in detail 
at the Design of Experiments area in Statistics. From the standpoint of the 
experimental design, the one-way analysis of variance technique is called an 
analysis of the single factor design.

9.2.2 Randomized Block Design 

Ÿ In the experiments of completely randomized design for measuring the fuel 
mileage explained in the previous section, 15 cars were randomly allocated to five 
drivers. However, one example allocation as inTable 9.2.1 shows a problem of this 
completely randomized design. For example, Driver 1 will only experiment with B 
and C types of cars and Driver 3 will only experiment A and B types of cars so 
that the variable between drivers will not be averaged in the test. Thus, if there 
is a significant variation between drivers for measuring the fuel mileage, the error 
term of the analysis of variance may not be a simple experimental error. In order 
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to eliminate this problem, each driver may be required to experiment with each 
type of the car at least once which is known as a randomized block design. Table 
9.2.2 shows an example of possible allocation in this case. In this table, the 
values in parentheses are the values of the observed fuel mileage.

Driver      1            2            3            4           5

Car Type
(gas mileage)

  A(22.4)      B(12.6)      C(18.7)      A(21.1)      A(24.5)
  C(20.2)      C(15.2)      A(19.7)      B(17.8)      C(23.8)
  B(16.3)      A(16.1)      B(15.9)      C(18.9)      B(21.0)

Table 9.2.2  Example of randomized block design 

Ÿ Table 9.2.2 shows that the total observed values are divided into five groups by 
driver, called blocks so that they have the same characteristics. The variable 
representing blocks, such as the driver, is referred to as a block variable. A block 
variable is considered generally if experimental results are influenced significantly 
by this variable which is different from the factor. For example, when examining 
the yield resulting from rice variety, if the fields of the rice paddy used in the 
experiment do not have the same fertility, divide the fields into several blocks 
which have the same fertility and then all varieties of rice are planted in each 
block of the rice paddy. This would eliminate the influence of the rice paddy 
which have different fertility and would allow for a more accurate examination of 
the differences in yield between rice varieties.

Ÿ Statistical model of the randomized block design with  blocks can be represented 
as follows:

             ⋯    ⋯

In this equation,  is the effect of   level of the block variable to the 
response variable. In the randomized block design, the variation resulting from the 
difference between levels of the block variable can be separated from the error 
term of the variation of the factor independently. In the randomized block design, 
the total variation is divided into as follows:


  




  
  



Ÿ If you square both sides of the equation above and then combine for all , you 
can obtain several sums of squares as in the one-way analysis of variance as 
follows: 

Total sum of squares, degrees of freedom 

     SST
  




 






 

Error sum of squares, degrees of freedom 

     SSE 
  




 











Treatment sum of squares, degrees of freedom 

     SSTr 
  




 






   
  







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Block sum of squares, degrees of freedom 

     SSB 
  




 






    
 








Ÿ The following facts are always established in the randomized block design.

Division of the sum of squares and degrees of freedom
   Sum of squares :     SST   =    SSE    +   SSTr   +  SSB  
   Degrees of freedom :    =   +  ()   + ()

Ÿ Table 9.2.3 shows the ANOVA table of the randomized block design. In this 
ANOVA table, if you combine the sum of squares and degrees of freedom of the 
block variable and the error variation, it becomes the sum of squares and degrees 
of freedom of the error term in the one-way ANOVA table 9.1.3.
 

Variation Sum of 
Squares  

Degrees of 
freedom Mean Squares    F value

Treatment  SSTr     MSTr  k

SSTr
  



Block  SSB       MSB  b

SSB

Error  SSE  MSE bk 
SSE

Total  SST     

Table 9.2.3  Analysis of Variance Table of the randomized block design

   

Ÿ In the randomized block design, the entire experiments are not randomized unlike 
the completely randomized design, but only the experiments in each block are 
randomized. 

Ÿ Another important thing to note in the randomized block design is that, although 
the variation of the block variable was separated from the error variation, the 
main objective is to test the difference between levels of a factor as in the 
one-way analysis of variance. The test for differences between the levels of the 
block variable is not important, because the block variable is used to reduce the 
error variation and to make the test for differences between the levels of the 
factor more accurate. 

Ÿ In addition, the error mean square (MSE) does not always decrease, because  
although the block variation is separated from the error variation of the one-way 
analysis of variance, the degrees of freedom are also reduced.
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Example 9.2.1 Table 9.2.4 is the rearrangement of the fuel mileage data in Table 9.2.2 measured by 
five drivers and car types.

   

    Drive 1       2       3      4      5  Average(⋅ )

Car 
Type

A
B
C

 22.4    16.1    19.7   21.1   24.5
 16.3    12.6    15.9   17.8   21.0
 20.2    15.2    18.7   18.9   23.8    

 20.76
 16.72
 19.36

  Average    19.63   14.63   18.10  19.27  23.10   18.947

Table 9.2.4  Fuel mileage data by five drivers and three car types

 ⇨ eBook ⇨ EX090201_GasMilage.csv

1) Assuming that this data have been measured by the completely randomized design, 
use 『eStat』 to do the analysis of variance whether the three car types have the 
same fuel mileage.

2) Assuming that this data have been measured by the randomized block design, use 
『eStat』 to do the analysis of variance whether the three car types have the same 
fuel mileage.

Answer 1) In 『eStat』, enter data as shown in <Figure 9.2.1> and click the icon of analysis of 
variance . Select 'Analysis Var' as Miles and 'By Group' as Car in the variable 
selection box, then the confidence interval graph for each type of cars will appear 
such as <Figure 9.2.2>.

<Figure 9.2.1> Data 
input for randomized 

block design for   
『eStat』ANOVA

  
<Figure 9.2.2> Dot graph and 95% confidence 
interval for population mean of each car type

w Click the [ANOVA F-test] button in the option below the graph to reveal the 
ANOVA graph as in <Figure 9.2.3> and the ANOVA table as in <Figure 9.2.4>. The 
result of the ANOVA is that there is no difference in fuel mileage between the cars 
of each company. The same is true for the multiple comparisons tests in <Figure 
9.2.5>.
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Example 9.2.1
Answer

(continued)

<Figure 9.2.3> ANOVA of gas milage 

<Figure 9.2.4> ANOVA table of gas milage

<Figure 9.2.5> Multiple comparisons by car

2) If this data have been extracted using the randomized block design, the block sum 
of squares will be separated from the error sum of squares. Adding Driver variable 
to 'by Group' in the variable selection box of『eStat』will give you a scatter plot of 
driver-specific fuel mileage for each car type as shown in <Figure 9.2.6>. This 
scatter plot shows a significant difference in fuel mileage per driver.
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Example 9.2.1
Answer

(continued)

<Figure 9.2.6> Fuel mileages for each driver

w  Click the [ANOVA F-Test] button in the options window below the graph to reveal 
the two-way mean table shown in <Figure 9.2.7> and the ANOVA table shown in 
<Figure 9.2.8>. This ANOVA table clearly shows a decrease in error sum of squares 
and reduces significantly the mean squares of errors. This is due to the large 
variation between drivers being separated from the error variation. Factor B (driver) 
represents the block sum of squares separated from error term. The p-value shows 
that, the block (driver) effect is statistically significant. The   value for the 
hypothesis        of fuel mileage by Factor A (car type) is 43.447 
and is greater than = 4.46, so you can reject the  at the significance 
level of 0.05. Consequently, significant differences in fuel mileages between car 
types can be found by removing the variation of the block in the error term.

<Figure 9.2.7> Two-way mean table by car and driver
 (There is no standard deviation of single data and denoted as NaN)
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Example 9.2.1
Answer

(continued)

<Figure 9.2.8> ANOVA table for randomized block design

w In average, car type A has the best fuel mileage than other car types. In order to 
examine more about the differences between car types, the multiple comparisons 
test in the previous section can be applied. In this example, you can use one HSD 
value for all mean comparisons, because the number of repetitions at each level is 
the same (   ). 

       




   




  

   Therefore, there is a significant difference in fuel mileage between all three types of 
cars, since the differences between the mean values (4.04, 1.40, 2.64) are all 
greater than the critical value of 1.257. 

w The same analysis of randomized design can be done using 『eStatU』 by following 
data input and clicking [Execute] button.

<Figure 9.2.9> Data input for 『eStatU』RBD

[Practice 9.2.1] The following is the result of an agronomist's survey of the yield of four varieties of 
wheat by using the randomized block design of the three cultivated areas (block). Test 
whether the mean yields of the four wheats are the same or not with 5% significance 
level.

   Cultivated Area  
1       2       3 

Wheat 
Type

A
B
C
D

50      60      56
59      52      51
55      55      52
58      58      55

 ⇨ eBook ⇨ PR090201_WheatAreaYield.csv
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9.2.3 Latin Square Design 

Ÿ In the experiments of randomized block design for measuring the fuel mileage 
explained in the previous section, there is one extraneous block variation which is 
the driver. If the researcher feels that there is an additional variation such as 
road type, there are two identifiable sources of extraneous block variations, i.e., 
two block variables. In this case, the researcher needs a design that will isolate 
and remove both sources of block variables from residual. The Latin square design 
is such a design.

Ÿ In the Latin square design, we assign one sources of extraneous variation to the 
columns of the square and the second source of extraneous variation to the rows 
of the square. We then assign the treatments in such a way that each treatment 
occurs one and only once in each row and each column. The number of rows, 
the number of columns, and the number of treatments, therefore, are all equal.

Ÿ Table 9.2.5 shows a 3 × 3 typical Latin squares with three rows, three columns 
and three treatments designated by capital letters A, B, C.

    Column 1   Column 2   Column 3 
Road 1     Road 2     Road 3 

Row 1
Row 2
Row 3

Driver 1
Driver 2
Driver 3

A           B           C
B           C           A 
C           A           B

Table 9.2.5  Fuel mileage data by three drivers 
and three road types of three car types (A, B, C)

Table 9.2.6 shows a 4 × 4 typical Latin squares with four rows, four columns and 
four treatments designated by capital letters A, B, C, D.

    Column 1   Column 2   Column 3   Column 4
Road 1     Road 2     Road 3     Road 4 

Row 1
Row 2
Row 3
Row 4

Driver 1
Driver 2
Driver 3
Driver 4

A           B           C          D
B           C           D          A 
C           D           A          B
D           A           B          C

Table 9.2.6  Fuel mileage data by four drivers and four road 
types of four car types (A, B, C, D)

Ÿ In the Latin square design, treatments can be assigned randomly in such a way 
that the car type occurs one and only once in each row and each column.. 
Therefore, there are many possible designs of 3 × 3 and 4 × 4 Latin square. We 
get randomization in the Latin square by randomly selection a square of the 
desired dimension from all possible squares of that dimension. One method of 
doing this is to randomly assign a different treatments to each cell in each 
column, with the restriction that each treatment must appear one and only once 
in each row.

Ÿ Small Latin squares provided only a small number of degrees of freedom for the 
error mean square. So a minimum size of 5 × 5 is usually recommended.

Ÿ The hypothesis of Latin square design with  treatments is as follows: 

Null hypothesis       ⋯  

Alternative hypothesis   At least one pair of   is not equal

Ÿ Statistical model of the   ×  Latin square design with   treatments can be 
represented as follows:



9.2 Design of Experiments for Sampling / 23


              ⋯    ⋯   ⋯

 where     

In this equation,   is the effect of   level of the row block variable to the 
response variable and  is the effect of   level of the column block variable to 
the response variable.  is the effect of   level of the response variable. 

Ÿ Notation for row averages, column averages and treatment averages of  ×  
Latin squre data are as follows;

    Column 1   Column 2   ⋯ Column r  Row Average

Row 1
Row 2
⋯

Row r







⋯


  Column Average               ⋯    


Table 9.2.7 Notation for row means, column means and treatment averages 
of  ×  Latin squre data

 Treatment average:         ⋯        

Ÿ In the Latin square design, the variation resulting from the difference between 
levels of two block variables can be separated from the error term of the 
variation of the factor independently. In the Latin square design, the total 
variation is divided into as follows:


  




  
  

  


If you square both sides of the equation above and then combine for all , 
you can obtain the following sums of squares: 

Total sum of squares, degrees of freedom 

     SST
  




  




 






 

Error sum of squares, degrees of freedom 

     SSE 
  




 
















Row sum of squares, degrees of freedom 

     SSR 
  




 











  

Column sum of squares, degrees of freedom 

     SSC 
  




 











   

Treatment sum of squares, degrees of freedom 

     SSTr 
  




 











  

Ÿ The following facts are always established in the Latin square design. Table 9.2.8 
shows the ANOVA table of the Latin square design. In this ANOVA table,
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Division of the sum of squares and degrees of freedom
   Sum of squares :     SST   =  SSE + SSR  SSC  + SSTr
   Degrees of freedom :   =  + () + () + ()

Variation Sum of 
Squares  

Degrees of 
freedom Mean Squares    F value

Treatment  SSTr       MSTr  r

SSTr
  



Row  SSR         MSR  r

SSR

Column  SSC    MSC  r

SSC

Error  SSE    MSE 
rr

SSE

Total  SST      

Table 9.2.8  ANOVA table of the Latin square design

Example 9.2.2 Table 9.2.9 is the fuel mileage data of four car types (A, B, C, D) measured by four 
drivers and four road types with Latin square design.

    Column 1   Column 2   Column 3   Column 4
Road 1     Road 2     Road 3     Road 4 

Row 1
Row 2
Row 3
Row 4

Driver 1
Driver 2
Driver 3
Driver 4

A(22)       B(16)       C(19)       D(21)
B(24)       C(16)       D(12)       A(15)
C(17)       D(21)       A(20)       B(15)
D(18)       A(18)       B(23)       C(22)

Table 9.2.9  Fuel mileage data by four drivers and four road 
types of four car types (A, B, C, D)

Use 『eStatU』 to do the analysis of variance whether the four car types have the 
same fuel mileage.

Answer w In 『eStatU』- ‘Testing Hypothesis ANOVA – Latin Square Design’, select the number 
of treatment r = 4 and enter data as shown in <Figure 9.2.10>. 

<Figure 9.2.10> Data input for Latin square design in 『eStatU』
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Example 9.2.2
Answer

(continued)

w Click [Execute] button to show Dot graph by car type in Latin square design as 
<Figure 9.2.11> and ANOVA table as in <Figure 9.2.12>. The dot graph and result of 
the ANOVA is that there is no difference in fuel mileage between the car types. 

<Figure 9.2.11> Dot graph by car type in Latin square design

<Figure 9.2.12> ANOVA table of Latin square design

[Practice 9.2.2] 
To study the effect of packaging on the sales of a certain cereal, a researcher tries 
three different packaging methods (treatments) at four different times of the week 
(columns) in four different supermarket chains (rows). The variable of interest is daily 
salse. The following table shows the results of the study. Do these data show a 
significant difference in shoppers’ response to the different packaging methods? Let   
= 0.05.

   Time of week
1       2       3        4 

Store

1
2
3
4

A(50)      B(60)      C(56)      D(63)
B(59)      C(52)      D(51)      A(57)
C(55)      D(55)      A(52)      B(56)
D(58)      A(58)      B(55)      C(61)
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9.3 Analysis of Variance for Experiments of Two Factors 

Ÿ If there are two factors affecting the response variable, the analysis is called a 
two-way analysis of variances. This technique is frequently used in experiments 
such as engineering, medicine and agriculture. The response variable is observed 
at each combination of levels of two factors (denoted as A and B). In general, it 
is advisable to repeat at least two experiments at each combination of levels of 
two factors, if possible, in order to increase the reliability of the experimental 
results. 

Ÿ When data are obtained from repeated experiments at each factor level, the 
two-way ANOVA tests whether the population means of each level of factor A  
are the same (called the main effect test of the factor A) as the one-way 
ANOVA, or tests whether the population means of each level of factor B are the 
same (called the main effect test of the factor B). In addition, the two-way 
ANOVA tests whether the effect of one factor A is influenced by each level of 
the other factor B (called the interaction effect test). For example, in a chemical 
process, if the higher the pressure when the temperature is low, the greater the 
amount of products, and the lower the pressure when the temperature is high, 
the greater the amount of products, the interaction effect exists between the two 
factors of temperature and pressure. The interaction effect exists where the 
effects of one factor change with changes in the level of another factor.

Definition Main effect and Interaction effect
When data are obtained from repeated experiments at each factor level, 
the two-way ANOVA tests whether the population means of each level of 
factor A (called the main effect test of the factor A) are the same as the 
one-way ANOVA, or tests whether the population means of each level of 
factor B are the same (called the main effect test of the factor B). 
The two-way ANOVA also tests whether the effect of one factor A is 
influenced by each level of the other factor B (called the interaction effect 
test). 

Example 9.3.1 Table 9.3.1 shows the yield data of three repeated agricultural experiments for each 
combination of four fertilizer levels and three rice types to investigate the yield of rice. 

Fertilizer
Types of rice

1               2              3  
1
2
3
4

  64,66,70         72,81,64         74,51,65 
  65,63,58         57,43,52         47,58,67
  59,68,65         66,71,59         58,45,42
  58,50,49         57,61,53         53,59,38 

Table 9.3.1  Yield of rice by fertilizers and types of rice (unit kg)

 ⇨ eBook ⇨ EX090301_YieldByRiceFertilzer.csv

1) Find the average yield for each combination of fertilizers and rice types.
2) Using 『eStat』, draw a scatter plot with the rice types (1, 2 and 3) as X-axis and 

the yield as Y-axis. Separate the color of dots in the scatter plot by the type of 
fertilizer. Then, show the average of the combinations at each level on the scatter 
plot and connect them with lines for each type of fertilizer to observe. 

3) Test the main effects of fertilizers and rice types and test the interaction effect of 
the two factors.

4) Using『eStat』, check the result of the two-way analysis of variance.
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Example 9.3.1
Answer

1) For convenience, let us call the fertilizer as the factor A and the rice type as factor 
B. The averages of the rice yield for each level combination of two factors are 
shown in Table 9.3.2. Denote the   rice yield, , and average  ·  of each 
combination of   level of factor A and   level of factor B. Also, denote the 
average of   level of factor A as  ·· , the average of   level of factor B as 
 ·· , and the global average as  ··· . 

Fertilizer 
(Factor B)

Types of Rice (Factor A)
Row Average

1            2            3

1
2
3
4

·    ·    ·  

·    ·    ·  

·    ·    ·  

·    ·    ·  

··  

··  

··  

··  

Column 
Average

··     ··    ··   ···  

Table 9.3.2 Average yield of rice by fertilizers and types of rice (unit kg)

2) To draw a scatter plot for the two-way ANOVA using 『eStat』, enter data as 
<Figure 9.3.1> where the fertilizer is variable 1, the rice type is variable 2 and the 
rice yield is variable 3.

<Figure 9.3.1> Data input for 
two-way ANOVA in 『eStat』

  

w In the variable selection box which appears by clicking the ANOVA icon  on the 
main menu, select 'Analysis Var' as Yield and 'By Group' as Rice and Fertilizer, then 
the scatter plot of the yield by rice type will appear as in <Figure 9.3.2>. In 
addition, the average yields at each rice type by fertilizer are marked as dots 
linking them with lines by fertilizer. In this graph, rice type 1 always yields more 
than rice type 3 regardless of the fertilizer used. Rice type 2 varies in yield 
depending on the type of fertilizer used, which shows the existence of interaction, 
and the use of fertilizer 1 usually results in a high yield regardless of the rice 
types. 
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Example 9.3.1
Answer

(continued)

<Figure 9.3.2> Yields by rice types and fertilizer types 

3) Testing the factor A, which is to test the main effect of rice types, implies to test 
the following null hypothesis.

   : The average yields of the three rice types are the same.

w If the null hypothesis is rejected, we conclude that the main effect of rice types 
exists. In order to test the main effect of rice types, as in the one-way analysis of 
variance, the sum of squared distances from each average yield   of rice type   
to the overall average yield  . 

       
    

    
   

   where the weight of 12 of each sum of squares is calculated by the number of 
data for each rice type. Since there are 3 rice types, the degrees of freedom of 
 is (3-1) and we call the sum of squares  divided by (3-1),  , 
is the mean squares of factor A, .

w Testing the factor B, which is to test the main effect of fertilizer types, implies to 
test the following null hypothesis.

   : The average yields of the four fertilizer types are the same.

w If the null hypothesis is rejected, we conclude that the main effect of fertilizer 
types exists. In order to test the main effect of fertilizer types, as in the one-way 
analysis of variance, the sum of squared distances from each average yield  of 
fertilizer type  to the overall average yield  , 

    
    

    
    

    

   where the weight of 9 of each sum of squares is calculated by the number of data 
for each fertilizer type. Since there are 4 fertilizer types, the degrees of freedom of 
  is (4-1) and we call the sum of squares   divided by (4-1),  , 
is the mean squares of factor B,  .

w Testing the interaction effect of rice and fertilizer (represented as factor AB) is to 
test the following null hypothesis.

   : There is no interaction effect between rice type and fertilizer type.
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Example 9.3.1
Answer

(continued)

w If the null hypothesis is rejected, we conclude that there is an interaction effect 
between rice types and fertilizer types. In order to test the interaction effect, the 
sum of squared distances from each average yield  subtracting the average yield 
 of fertilizer type , subtracting the average yield   of rice type , adding the 
overall average yield  . 

   SSAB   
 

 
 

 
 



           
 

 
 

 
 



           
 

 
 

 
 



           
 

 
 

 
 



           
 

 
 

 
 



           
 

 
 

 
 

 
          

   where the weight of 3 of each sum of squares is calculated by the number of data 
for each cell of rice and fertilizer type. The degrees of freedom of   is 
(3-1)(4-1) and we call the sum of squares   divided by  (3-1)(4-1), 
   is the mean squares of interaction AB,  .

w It is not possible to test each effect immediately using these sum of squares, but 
the error sum of squares should be calculated. In order to calculate the error sum 
of squares, first we calculate the total sum of squares which is the sum of the 
squared distances from each data to the overall average.

   SST  y 
y 

 y


               
  

  
 

   This total sum of squares can be proven mathematically to be the sum of the 
other sums of squares as follows:

   SST  SSA  SSB  SSAB  SSE

   Therefore, the error sum of squares can be calculated as follows:
  

   SSE  SST  SSA  SSB  SSAB  

w If the yields on each rice type or fertilizer type are assumed to be normal and the 
variances are the same, the statistic which divides the each mean squares by the 
error mean squares follows   distribution. Therefore, the main effects and 
interaction effect can be tested using   distributions. If the interaction effect is 
separated, we test them first. Testing results using the 5% significance level are as 
follows:

  ① Testing of the interaction effect on rice and fertilizer:

     






SSE



SSAB

 = 1.77

      = 2.51

   Since  <   , we conclude that there is no interaction. The interaction on 
rice and fertilizer in <Figure 9.3.2> is so small which is not statistically significant 
and it may due to other kind of random error. The calculated p-value of   
using『eStat』is 0.1488.  
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Example 9.3.1
Answer

(continued)

 ② Testing of the main effect on rice types (Factor A):

   
 


 



SSE



SSA

 = 3.08

      = 3.40

   Since  <   , we can not reject the null hypothesis that average yields of 
rice types are the same. There is not enough evidence statistically that average 
yields are different depending on rice types. The calculated p-value of   
using『eStat』is 0.0644. 

 ③ Testing of the main effect on fertilizer types (Factor B):

     


 



SSE



SSB

 = 6.02

      = 3.01

   Since  >   , we reject the null hypothesis that average yields of fertilizer 
types are the same. There is enough statistical evidence which shows that average 
yields are different depending on fertilizer types. Since there is no interaction effect 
by 1), we can conclude that fertilizer 1 produces more yields than other fertilizer. 
The calculated p-value of   using『eStat』is 0.0033. 

w The result of the two-way analysis of variances is as Table 9.3.3.

Factor Sum of 
Squares

degrees of 
freedom

Mean 
Squares F value     -value

Rice Type   342.3889 2      171.1944  3.0815   0.0644

Feritlizer Type 1002.8889  3      334.2963  6.0173   0.0033

Interaction 588.9444  6       98.1574     1.7668   0.1488

Error 1333.3333  24       55.5556

Total  3267.5556 35

Table 9.3.3  two-way analysis of variance of yields by rice and fertilizer types

4) If you press the [ANOVA F-test] button in the options window below <Figure 9.3.2> 
of『eStat』, the two-dimensional table of means / standard deviations for each 
level combination as in <Figure 9.3.3> and the two-way analysis of variance table as 
in <Figure 9.3.4> will appear in the Log Area. 

<Figure 9.3.3> Two dimensional mean / standard deviation table
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Example 9.3.1
Answer

(continued)

<Figure 9.3.4> two-way analysis of variance table
  

 

Ÿ Let's generalize the theory of the two-way analysis of variance discussed in the 
example above. Let  be the random variable representing the    observation 
at the    level of factor A, which has   number of levels, and    level of 
factor B, which has   number of levels. A statistical model of the two-way 
analysis of variances is as follows:

              ⋯    ⋯    ⋯ 
    : total mean
     : effect of    level of factor A
    : effect of    level of factor B
    : interaction effect of    level of factor A and    level of factor B
    : error terms which are independent and follow N(0,).

Assume that experiments are repeated  times equally at the    level of factor A 
and    level of factor B. Therefore, the total number of observations is   .

Ÿ The total sum of squared distances from each observation to the total mean  
can be partitioned as following sum of squares similar to the one-way analysis of 
variance.  

Total sum of squares: SST  
i 

a


j 

b


k

r

Y ijk
Y 

 : degrees of freedom: 

Fator A sum of squares: SSA  br
i 

a

Y i
Y 

 : degrees of freedom:  

Factor B sum of squares: SSB  ar
j 

b

Y j
Y 

 : degrees of freedom:      

Interaction sum of squares: SSAB  r
i 

a


j 

b

Y ij
Y i 

Y j
Y 

 : degrees of 

                                                freedom:     

Error sum of squares: SSE  
i 

a


j 

b


k

r

Y ijk
Y ij

 : degrees of freedom:   

Partition of Sum of Squares and degrees of freedom

Sum of Squares:              
degrees of freedom:         
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Ÿ The two-way analysis of variance is summarized as Table 9.3.4.

Factor  Sum of     Degree of     Mean Squares                 F value  
 Squares    Freedom

 Factor A 
 Factor B 
Interaction

Error  

  SSA                MSA = SSA/()              = MSA/MSE
  SSB                MSB = SSB/()              = MSB/MSE
  SSAB       MSAB = SSAB/( )   = MSAB/MSE
  SSE               MSE = SSE/()

Total   SST             

Table 9.3.4  two-way analysis of variance table

      

Two-way analysis of variance without repetition of experiments
If there is no repeated observation at each level combination of two 
factors, the interaction effect can not be estimated and the row of 
interaction factor is deleted from the above two-way ANOVA table. In 
this case, the analysis of variance table is the same as the randomized 
block design as Table 9.2.3. 

Ÿ Testing hypothesis for the main effects and interaction effect of factor A and 
factor B are as follows. If the interaction effect is separated, it is reasonable to 
test the interaction effect first. This is because, depending on the significance of 
the interaction effect, the method of interpreting the result of the main effect 
test of each factor can be different.  

1)   Test for the interaction effect: 

        ⋯   ⋯    
 If  MSABMSE >    , then reject 

2)   Test for the main effect of factor A:
     
       ⋯      
 If   MSAMSE >    , then reject 

3)   Test for the main effect of factor B:

       ⋯      
 If  MSBMSE >    , then reject 

(『eStat』 calculates the p-value for each of these tests and tests them using it. 
That is, for each test, if the p-value is less than the significance level, the null 
hypothesis  is rejected.)

Ÿ If the test for interaction effect is not significant, a test of the main effects of 
each factor can be performed to test significant differences between levels. 
However, if there is a significant interaction effect, the test for the main effects 
of each factor is meaningless, so an analysis should be made on which level 
combinations of factors show differences in the means.
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Ÿ If you conclude that significant differences between the levels of a factor as in 
the one-way analysis of variance exist there, you can compare confidence intervals 
at each level to see which level of the differences appears. And a residual 
analysis is necessary to investigate the validity of the assumption.

[Practice 9.3.1] The result of an experiment at a production plant of an electronic component to 
investigate the life of the product due to changes in temperature ( ) and 
humidity ( ) is as follows. Analyze data using the analysis of variance with 5% 
significance level.

(Unit: Time)  



6.29
6.38
6.25

5.95
6.05
5.89



5.80
5.92
5.78

6.32
6.44
6.29

 ⇨ eBook ⇨ PR090301_LifeByTemperatureHumidity.csv

Design of experiments for the two-way analysis of variances
Even in the two-way analysis of variance, obtaining sample data at each 
level of two factors in engineering or in agriculture can be influenced by 
other factors and should be careful in sampling. In order to accurately 
identify the differences that may exist between each level of a factor, it 
is advisable to make as few as possible influences from other factors. 
One of the most commonly used methods of doing this is completely 
randomized design which makes the entire experiments random. There 
are many other experimental design methods, and for more information, 
refer to the references to the experimental design of several factors.
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Exercise 

9.1  Complete the following ANOVA table.

 Factor                        df                   ratio

 Treatment      154.9199        4      ______     ______
 Error           ________      __

 Total           200.4773       39

9.2  Answer the following questions based on this ANOVA table.

 Factor                      df                     ratio

 Treatment      5.05835       2       2.52917        1.0438
 Error          65.42090      27       2.4230

1) How many levels of treatment are compared?
2) How many total number of observations are there?
3) Can you conclude that the levels of treatment are significantly different with the 

5% significance level? Why?

9.3   In order to test customers' responses to new products, four different exhibition methods (A, B, C 
and D) were used by a company. Each exhibition method was used in nine stores by selecting 36 
stores that met the company's criteria. The total sales for the weekend are shown in the following 
table.

   

Exhibition Method  Sales for the weekend in 9 stones (unit: 1000USD)

A
B
C
D

    5     6     7     7     8     6     7     7     6
    2     2     2     3     3     2     3     3     2
    2     2     3     3     2     2     2     3     3
    6     6     7     8     8     8     6     6     6

1) Draw a scatter plot of sales (y axis) and exhibition method (x axis). Mark the 
average sales of each exhibition method and connect them with a line. 

2) Test that the sales by each exhibition method are different in the amount of sales 
with the 5% significance level. Can you conclude that one of the exhibition 
methods shows significant effect on sales? 

9.4  The following table shows mileages in km per liter obtained from experiments to compare three 
brands of gasoline. In this experiment, seven cars of the same type were used in a similar 
situation to reduce the variation of the car. 

   

Gasoline mileage in km / liter

A
B
C

    14      19      19      16      15      17      20
    20      21      18      20      19      19      18
    20      26      23      24      23      25      23

1) Calculate the average mileages of each gasoline brand. Draw a scatter plot of gas 
milage (y axis) and gasoline brand (x axis) to compare.

2) From this data, test whether there are differences between gasoline brands for gas 



Chapter 9  Exercise / 35


milage with the 5% significance level.

9.5  The result of a survey on job satisfaction of three companies (A, B, and C) is as follows. Test 
whether the averages of job satisfaction of the three companies are different with the 5% 
significance level. 

   

Company Job satisfaction score

A
B
C

   69 67 65 59 68 61 66
   56 63 55 59 52 57
   71 72 70 68 74

9.6  Psychologists were asked to investigate the job satisfaction of salespeople in three companies: A, 
B and C. Ten salespeople were randomly selected from each company and a test to measure the 
job satisfaction was conducted. Test scores are as follows. From this data, can we claim that the 
average scores of the job satisfaction of three companies are different with the significance level 
of 0.05?

   

Company Job satisfaction score

A
B
C

67    65    59    59    58    61    66    53    51    64
66    68    55    59    61    66    62    65    64    74
87    80    67    89    80    84    78    65    72    85

9.7  An advertising agency experimented to find out the effects of various forms (A, B, C, D and E) of 
TV advertising. Fifty television viewers were shown five forms of TV commercials for a cold 
medicine in random order one by one. The effect of advertising after viewing was measured and 
recorded as follows. Test an appropriate hypothesis with the 5% significance level.

   

                               Forms of TV Advertising

      A               B               C              D              E

   20 23 21        28 27 22       33 34 25       33 29 31       49 41 41
   23 26 24        28 23 29       26 27 33       29 27 25       39 41 48
   26 23 20        27 25 28       25 32 25       26 26 33       43 43 46
   24               21             34             32              35

9.8  The following is the result of an agronomist's survey of the yield of four varieties of wheat by using 
the randomized block design of three cultivated areas (block). Test whether the mean yields of the 
four wheats are the same or not with the 5% significance level.

   

Wheat Type
Cultivated Area   Average

(⋅ )1       2       3 
A
B
C
D

60      61      56
59      52      51
55      55      52
58      58      55

59
54
54
57

   
9.9  Answer the following questions based on the following ANOVA table. 
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Factor                   df                 value       -value

  A        12.3152        2       6.1575      29.4021       < 0.005
  B        19.7844        3       6.5948      31.4898       < 0.005
  AB        8.9416        6       1.4902       7.1159       < 0.005
 Error      10.0525       48       0.2094

 Total      51.0938       59

1) What method of analysis was used?
2) What conclusions can be obtained from the above analysis table? The significance 

level is 0.05.

9.10 Research was conducted to compare the job satisfaction of workers in the assembly process with 
different working conditions. Another concern is the relationship between the job satisfaction and 
years of service. Observers would like to investigate the interaction effect between the years of 
service and working conditions. The following table shows the level of the job satisfaction obtained 
from the survey. Analyze the data using an appropriate methodology.

   

Years of service
Working condition

Good            Fair            Bad

< 5

12              10              8
15              10              7
15               9              7
14              10              8
12               9              6

5 - 10  

12              10             10
14              10             11
12              14             12
10              14             10
11              10             14

11 or more 

 9              10             12
10              11             14
 9              10             15
 9              10             15
10              12             15

9.11 The following table shows the degree of stress in the work and the level of anxiety among 27 
workers classified as years of service. Analyze data using the analysis of variance with the 5% 
significance level.

   

Factor A
Years of service

Job-induced pressure (Factor B)
Good            Fair            Bad

< 5
25             18              17
28             23              24
22             19              19

5 - 10  
28             16              18
32             24              22
30             20              20

11 or more 
25             14              10
35             16               8
30             15              12
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9.12 A fertilizer manufacturer hired a research team to study the yields of three grain seeds (A, B, C)  
and three types of fertilizer (1, 2, 3). Three grain seeds in combination of three types of fertilizer 
were used and the experiment were repeated three times at each combination of treatments. Each 
combination of treatments was randomly assigned to 27 different regions. Analyze data using the 
analysis of variance with the 5% significance level.

   

Seed type
Fertilizer type

1            2            3

A
 5            8            10
 8            8             9
 7           10            10

B
 6           10            15
 8           12            14
 6           11            14

C
 7           12            16
 8           12            10
10           14            18

9.13 The result of an experiment at a production plant of an electronic component to investigate the life 
of the product due to changes in temperature ( ) and humidity ( ) is as follows. Analyze 
data using the analysis of variance with the 5% significance level.

   

(Unit: Time)  



6.29
6.38
6.25

5.95
6.05
5.89



5.80
5.92
5.78

6.32
6.44
6.29

9.14 The result of a fertilizer manufacturer's experiment with the production of soybeans on two seeds 
using three types of fertilizer (A, B, and C) is as follows. Each fertilizer and seed were tested four 
times. Analyze data using the analysis of variance with the 5% significance level.

    

Fertilizer

A B C

Seed 1

5
8
7
6

 8
 8
10
10

10
12
10
10

Seed 2

8
6
8

10

12
11
12
14

14
16
16
18
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Multiple Choice Exercise

9.1  Who first announced the ANOVA method? 

① Laspeyres ② Paasche
③ Fisher      ④ Edgeworth

9.2  What are the abbreviation of the analysis of variance? 

① ANOVA ②  
③  ④  

9.3  Which areas are not the area of application for the analysis of variance? 

① marketing survey ② quality control
③ economy forecasting ④ medical experiment

9.4  Which sampling distribution is used for the analysis of variance? 

①  distribution ②  distribution
③  distribution ④ Normal distribution

9.5  Which is the correct process for the one-way ANOVA? 

a. Calculate Total SS, Treatment SS, Error SS
b. Set the hypothesis
c. Test the hypothesis
d. Calculate the variance ration in the ANOVA table
e. Find the value in the F distribution table

① a → b → c → d → e ② b → d → e → a → c
③ b → a → d → e → c ④ b → e → d → a → c

9.6  Which is the correct relationship between the total sum of squares (SST), between sum of squares 
(SSB), error sum of squares (SSE)? 

① SST = SSB + SSE ② SST = SSB - SSE
③ SST = SSE - SSB ④ SST = SSB * SSE

9.7  If    and the observed  ratio is 6.90 in the ANOVA table, what is your conclusion 
with the 5％ significance level? 

① significantly different ② no significant difference
③ very similar ④ unknown

9.8  Which is not appeared in the analysis of variance table? 

① sum of squares ② F ratio
③ degrees of freedom ④ standard deviation



Chapter 9  Multiple Choice Exercise / 39


9.9 What is the name of variable which effects response variable in the experimental design? 

① cause element   ② independent variable
③ dependent variable   ④ factor

9.10 In order to compare the fuel mileage of three types of cars, three drivers would like to drive cars, 
but fuel mileage may be affected by the driver. What is the name of variable like drivers? 

① block variable   ② independent variable
③ dependent variable ④ factor

9.11 When we compare the fuel mileage of three types of cars, which experimental desing is used to 
reduce the effect of drivers? 

 bvcxz① completely randomized design ② latin square method
③ two-way ANOVA        ④ randomized block design

9.12 What is called the effect of a factor A that varies depending on the level of the factor B? 

① main effect of factor A  ② main effect of factor B
③ two-way ANOVA ④ interaction effect

(Answers) 
9.1 ③, 9.2 ①, 9.3 ③, 9.4 ②, 9.5 ③, 9.6 ①, 9.7 ①, 9.8 ④, 9.9 ④, 9.10 ①, 
9.11 ④, 9.12 ④


