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CHAPTER OBJECTIVES
In this chapter, we study data observed over
time, time series, and find out about:

- What is time series analysis and what
are the types of time series models?
- How to smooth a time series.
- How to transform a time series.
- Prediction method using regression
model.
- Prediction method using exponential
smoothing model.
- How to predict future values with models
for seasonal time series..

We will be mainly focused on descriptive
methods and simple models, and
discussion of the Box-Jenkins model and
other theoretical models will not be
discussed.
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13.1 What is Time Series Analysis? 

Ÿ Time series data refers to data recorded according to changes in time. In general, 
observations are made at regular time intervals such as year, season, month, or 
day, and this is called a discrete time series. There may be time series that are 
continuously observed, but this book will only deal with the analysis of discrete 
time series.

Ÿ An example of a discrete time series is the population of Korea as shown in 
[Table 13.1.1]. This data is from the census conducted every five years in Korea 
from 1925 to 2020 (except for 1944 and 1949). .

Year Population Year Population Year Population

1925
1930
1935
1940
1944
1949
1955

19,020,030
20,438,108
22,208,102
23,547,465
25,120,174
20,166,756
21,502,386

1960
1966
1970
1975
1980
1985
1990

24,989,241
29,159,640
31,435,252
34,678,972
37,406,815
40,419,652
43,390,374

1995
2000
2005
2010
2015
2020

44,553,710
45,985,289
47,041,434
47,990,761
51,069,375
51,829,136

[Table 13.1.1] Population of Korea
(Source: Korea National Statistical Office, Census till 2010, Registered Census 2015, 2020)

Ÿ As shown in the table above, it is not easy to understand the overall shape of 
the time series displayed in numbers. The first step in time series analysis is to 
observe the time series by drawing a time series plot with the X axis as time 
and the Y axis as time series values. For example, the time series plot of the 
total population in Korea is shown in <Figure 13.1.1>. 

<Figure 13.1.1> Time Series of Korea Population

Ÿ Observing this figure, Korea's population has an overall increasing trend, but the 
population decreased sharply in 1944-1949 due to World War II. It can be seen 
that the population expanded rapidly after the Korean war in 1953 and slowed 
since 1990. It can also be seen that the growth has slowed further in the last 10 
years. By observing the time series in this way, trends, change points, and outliers 
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can be observed, which is helpful in selecting an analysis model or method 
suitable for the data.

Ÿ Time series that we frequently encounter include monthly sales of department 
stores and companies, daily composite stock index, annual crop production, yearly 
export and import time series, and yearly national income and economic growth 
rate, and so on.

Ÿ [Table 13.1.2] shows the percent increase in monthly sales of the US toy/game 
industry for the past 6 years, and <Figure 13.1.2> is a plot of this time series. As 
it is the rate of change from the previous month, it can be observed that it is 
seasonal data showing a large increase in November and December every year, 
moving up and down based on 0. However, May 2020 is an extreme with an 
increase rate of 211% unlike other years. For time series, you can better examine 
the characteristics of the data by converting the raw time series into the rate of 
change.

Year.Month Percent 
Increase Year.Month Percent 

Increase Year.Month Percent 
Increase

2016.01
2016.02
2016.03
2016.04
2016.05
2016.06
2016.07
2016.08
2016.09
2016.10
2016.11
2016.12
2017.01
2017.02
2017.03
2017.04
2017.05
2017.06
2017.07
2017.08
2017.09
2017.10
2017.11
2017.12

-66.7
2.5

12.5
-9.0
-0.6
-4.4
4.3
0.0
6.1
8.6

56.4
53.6

-65.6
-0.1
14.7
-5.7
-2.4
-5.5
1.3
4.2
8.4
7.2

54.9
45.5

2018.01
2018.02
2018.03
2018.04
2018.05
2018.06
2018.07
2018.08
2018.09
2018.10
2018.11
2018.12
2019.01
2019.02
2019.03
2019.04
2019.05
2019.06
2019.07
2019.08
2019.09
2019.10
2019.11
2019.12

-63.6
3.6

39.8
-21.0

5.9
-12.4
-16.9

5.2
7.5
8.5

54.9
5.8

-46.2
-3.8
16.3
-8.4
6.6

-5.3
0.8
7.7

-1.2
12.2
46.7
11.7

2020.01
2020.02
2020.03
2020.04
2020.05
2020.06
2020.07
2020.08
2020.09
2020.10
2020.11
2020.12
2021.01
2021.02
2021.03
2021.04
2021.05
2021.06
2021.07
2021.08
2021.09
2021.10
2021.11
2021.12

-49.1
2.2

-28.2
-58.2
211.1
26.8
-0.8
7.0
4.9
5.8

44.1
8.5

-37.1
-12.2
37.0

-10.3
-0.5
-2.0
4.6
1.8
5.2
6.4

40.0
10.6

[Table 13.1.2] Percent Increase, Monthly Sales of Toy/Game in US(%) 
(Source: Bureau of Census, US)



4   /  Chapter 13 Time Series Analysis


<Figure 13.1.2> Percent Increase, Monthly Sales of Toy/Game in US(%) 

Ÿ Most time series have four components: trend, season, cycle, and other irregular 
factors. A trend is a case in which a time series has a certain trend, such as a 
line or a curved shape as time elapses, and there are various types of trends. 
Trends can be understood as a consumption behavior, population variations, and 
inflation that appear in time series over a long period of time. Seasonal factors 
are short-term and regular fluctuation factors that exist quarterly, monthly, or by 
day of the week. Time series such as monthly rainfall, average temperature, and 
ice cream sales have seasonal factors. Seasonal factors generally have a short 
cycle, but fluctuations when the cycle occurs over a long period of time rather 
than due to the season is called a cycle factor. By observing these cyclical factors, 
it is possible to predict the boom or recession of a periodic economy. {Figure 
13.1.3} shows the US S&P 500 Index from 1997 to 2016, and a six-year cycle can 
be observed.

<Figure 13.1.3>] US S&P500 Index (1997- 2016)

Ÿ Other factors that cannot be explained by trend, season, or cyclical factors are 
called irregular or random factors, which refer to variable factors that appear due 
to random causes regardless of regular movement over time.
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13.1.1 Time Series Model

Ÿ By observing the time series, you can predict how this time series will change in 
the future by building a time series model that fits the probabilistic characteristics 
of this data. Because the time series observed in reality has a very diverse form, 
the time series model is also very diverse, from simple to very complex. In 
general, time series models for a single variable can be divided into the following 
four categories.

A. Regression Model

  A model that explains data or predicts the future by expressing a time series in 
the form of a function related to time is the most intuitive and easy to 
understand model. That is, when a time series is an observation of a random 
variable, ⋯ , it is expressed as the following model:

       ⋯

Here   is the error of the time series that cannot be explained by a function 
. In general   is assumed independent,     , and   = σ2 which 
is called a white noise. For example, the following model can be applied to a 
time series in which the data is horizontal or has a linear trend.

Horizontal:       
Linear Trend:       

B. Decomposition Model

  The model that decomposes the time series into four factors, i.e., trend( ), 
cycle( ), seasonal( ), and irregular( ), is an analysis method that has been 
used for a long time based on empirical facts. It can be divided into additive 
model and multiplicative model.

Additive Model:                
Multiplicative Model:    ⋅  ⋅  ⋅ 

Here   ,  ,   are deterministic function,    is a random variable. If we take 
the logarithm of a multiplicative model, it becomes an additive model. If the 
number of data is not enough the cycle factor can be omitted in the model.

C. Exponential Smoothing Model

  Time series data are often more related to recent data than to past data. The 
above two types of models are models that do not take into account the 
relationship between the past time series data and the recent time series data. 
Models using moving averages and exponential smoothing are often used to 
explain and predict data using the fact that time series forecasting is more 
related to recent data.

D. Box-Jenkins ARIMA Model

  The above models are not methods that can be applied to all types of time 
series, and the analyst selects and applies them according to the type of data. 
Box and Jenkins presented the following general ARIMA model that can be 
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applied to all time series of stationary or nonstationary type as follows:

            ⋯              ⋯

  The ARIMA model considers the observed time series as a sample extracted 
from a population time series, studies the probabilistic properties of each model, 
and establishes an appropriate time series model through parameter estimation 
and testing. For the ARIMA model, autocorrelation coefficients between time lags 
are used to identify a model. The ARIMA model is beyond the scope of this 
book, so interested readers are encouraged to consult the bibliography.

Ÿ In the above time series model, the regression model and ARIMA model are 
systematic models based on statistical theory, and the decomposition model and 
exponential smoothing model are methods based on experience and intuition. In 
general, regression models using mathematical functions and models using 
decomposition are known to be suitable for predicting slow-changing time series, 
whereas exponential smoothing and ARIMA models are known to be effective in 
predicting very rapidly changing time series.

Ÿ For all time series models, it is impossible to predict due to sudden changes. And 
because time series has so many different forms, it cannot be said that one time 
series model is always superior to another. Therefore, rather than applying only 
one model to a time series, it is necessary to establish and compare several 
models, combine different models, or make an effort to determine the final 
model by combining opinions of experts familiar with the time series.

13.1.2 Evaluation of Time Series Model

Ÿ Let the time series be the observed values of the random variables 
⋯  and 

⋯  be the values predicted by the model. If the 
model agrees exactly, the observed and predicted values are the same, and the 
model error   is zero. In general, it is assumed that the error  ’s of the time 
series model are independent random variables which follow the same normal 
distribution with a mean of 0 and a variance of  . The accuracy of a time 
series model can be evaluated using residual,  

  , which is a measure by 
subtracting the predicted value from the observed value. In general, the following 
mean squared error (MSE) is commonly used for the accuracy of a model and 
the smaller the MSE value, the more appropriate the predicted model is judged.

MSE n


t  

n

Y t 
Y t 



The mean square error is used as an estimator for the variance   of the error. 
Since MSE can have a large value, the root mean squared error (RMSE) is often 
used.

  

13.2 Smoothing of Time Series 

Ÿ Original time series data can be used to make a time series model by observing 
trends, but in many cases, time series can be observed by smoothing to 
understand better. In a time series such as stock price, it is often difficult to find 
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a trend because of temporary or short-term fluctuations due to accidental 
coincidences or cyclical factors. In this case, smoothing techniques are used as a 
method to effectively grasp the overall long-term trend by removing temporary or 
short-term fluctuations. The centered moving average method and the exponential 
smoothing method are widely used. 

13.2.1 Centered Moving Average

Ÿ The time series in [Table 13.2.1] is the world crude oil price based on the closing 
price every year from 1987 to 2022. Looking at <Figure 13.2.1>, it can be seen 
that the short-term fluctuations in the time series are large. However, causes such 
as oil shocks are short-term and not continuous, so if we are interested in the 
long-term trend of gasoline consumption, it would be more effective to look at 
the fluctuations caused by short-term causes.

Year Price of Oil 5-point Moving 
Average Year Price of Oil 5-point Moving 

Average

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

16.74 
17.12 
21.84 
28.48 
19.15 
19.49 
14.19 
17.77 
19.54 
25.90 
17.65 
12.14 
25.76 
26.72 
19.96 
31.21 
32.51 
43.36 

20.666
21.216
20.630
19.816
18.028
19.378
19.010
18.600
20.198
21.634
20.446
23.158
27.232
30.752
37.620
45.798

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

61.06 
60.85 
95.95 
44.60 
79.39 
91.38 
98.83 
91.83 
98.17 
53.45 
37.13 
53.75 
60.46 
45.15 
61.14 
48.52 
75.21 
106.95 

58.746
61.164
68.370
74.434
82.030
81.206
91.920
86.732
75.882
66.866
60.592
49.988
51.526
53.804
58.096
67.394

 [Table 13.2.1] Price of Crude Oil (End of Year Price, US$) and 5-point Moving Average
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<Figure 13.2.1> Price of Crude Oil and 5-point Moving Average

Ÿ The N-point centered moving average of a time series refers to the average of   
data from a single point in time. For example, in crude oil price data, the value 
of the five-point moving average for a specific year is the average of the data for 
two years before the specific year, that year, and the data for the next two 
years. Expressed as an expression, if   is a moving average in time  , the 
5-point centered moving average is as follows:

 

                

For example, the 5-point centered moving average for 1989 is as follows.

 

    



    

 

 

[Table 13.2.2] shows the values ​​of all 5-points centered moving averages obtained 
in this way and <Figure 13.2.1> is the graph of 5-points moving average. Note 
that the moving averages for the first two years and the last two years cannot 
be obtained here. It can be seen that the graph of the moving average is better 
for grasping the long-term trend than the graph of the original data because 
short-term fluctuations are removed. 

Ÿ The choice of a value   for the  -points moving average is important. A large 
value of   will provide a smoother moving average, but it has the disadvantage 
of losing more points at both ends and insensitive to detecting important trend 
changes. On the other hand, if you choose small  , you will lose less data at 
both ends, but you may not be able to get the smoothing effect because you 
will not sufficiently eliminate short-term fluctuations. In general, try a few values ​​
  to reflect important changes that should not be missed, while achieving a 
smoothing effect and balancing the points not to lose too much at both ends.

Ÿ If the value of   is an even number, there is a difficulty in obtaining a central 
moving average with the same number of data on both sides of the base year. 
For example, the center of the four-point moving average from 1987 to 1990 is 
between 1988 and 1989. If you denote this as  , it can be calculated as 
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follows:

 

   



   

 

Ÿ The 4-point moving average obtained in this way is called a non-central 4-points 
moving average. In the case of this even number N, the non-central moving 
average does not match the observation year of the original data, which is 
inconvenient. In the case of this even number N, it is calculated as the average 
of the noncentral moving average values of two adjacent non-central moving 
averages. In other words, the central four-point moving average in 1989 is the 
average of   and   as follows:

 

 



 

 

Ÿ If the time series is quarterly or monthly, a 4-point central moving average or a 
12-point central moving average is an average of one year, so it is often used to 
observe data without seasonality.

13.2.2 Exponential Smoothing

Ÿ 3-point moving average can be considered the weighted average of three data 
with each weight 1/3 as follows:

 

         
        

When the weights are   , the weighted moving average Mt of the 
time series is defined as follows:

 
  



 ,  n is the number of data.

Here,  ≥  , ∑n
i=1

wi=1

Ÿ Various weighted averages with different weights can be used depending on the 
purpose. Among them, a smoothing method that gives more weight to data closer 
to the present and smaller weights as it is farther from the present is called 
exponential smoothing. The exponential smoothing method is determined by an 
exponential smoothing constant   that has a value between 0 and 1. The 
exponentially smoothed data Et is calculated as follows:

     

     

     
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⋯⋯
       

Here, an initial value   is required, and   is usually used a lot, and the 
average value of the data can also be used. The exponentially smoothed value   
at the point in time   gives weight   to the current data, and the   
weight to the previous smoothed data is given. The exponentially smoothed value 
   can be represented with the original data   as follows:

 ⋯

Therefore, the exponential smoothing method uses all data from the present and 
the past, but gives the current data the highest weight, and gives a lower weight 
as the distance from the present time increases.

Ÿ Exponential smoothing of the crude oil price in [Table 13.2.1] with the initial 
value     and exponential smoothing constant   = 0.3 is as follows.

                                                       
               
        

All data exponentially smoothed with   = 0.3 are given in [Table 13.4]. It can 
be seen that, in the exponential smoothing method, there is no loss of data at 
both ends, unlike the moving average method. The crude oil price time series 
and exponentially smoothed data are shown in <Figure 13.2.2>. It can be seen 
that the smoothed data are not significantly different from the original data. If 
the value of   is small, more weight is given to the past data than to the 
present, making it less sensitive to sudden changes in the present data. 
Conversely, the closer the value of   is to 1, that is, the more weight is given 
to the current data, the more the smoothed data resembles the original data, 
and the smoothing effect disappears.
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Year Price of Oil
=0.3 

Exponental 
Smoothing

Year Price of Oil
=0.3 

Exponental 
Smoothing

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

16.74 
17.12 
21.84 
28.48 
19.15 
19.49 
14.19 
17.77 
19.54 
25.90 
17.65 
12.14 
25.76 
26.72 
19.96 
31.21 
32.51 
43.36 

16.740
16.854
18.350
21.389
20.717
20.349
18.501
18.282
18.659
20.832
19.877
17.556
20.017
22.028
21.408
24.348
26.797
31.766

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

61.06 
60.85 
95.95 
44.60 
79.39 
91.38 
98.83 
91.83 
98.17 
53.45 
37.13 
53.75 
60.46 
45.15 
61.14 
48.52 
75.21 
106.95 

40.554
46.643
61.435
56.385
63.286
71.714
79.849
83.443
87.861
77.538
65.416
61.916
61.479
56.580
57.948
55.120
61.146
74.888

 [Table 13.2.2] Price of Crude Oil and Exponential Smoothing with =0.3 

  

<Figure 13.2.2> Price of Crude Oil and Exponential Smoothing with =0.3 

13.2.3 Filtering by Moving Median 필터링

Ÿ The N-point centered moving median of a time series refers to the median of N 
data from a single point in time. For example, in crude oil price data, the value 
of a five-point moving median for a specific year is the median of data for two 
years before a certain year, that year, and data for two years thereafter. If data 
are denoted by               , and the data are sorted from 
smallest to largest, and expressed as                 , the 
median value is      .

Ÿ For example, the 1989 central moving median for crude oil prices in [Table 13.3] 
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is as follows:

  
     
 

 

Ÿ [Table 13.2.3] and <Figure 13.2.3> show all the five-point moving median values 
obtained in this way and their graphs. Note that the moving median for the first 
two years and the last two years are not available here. Because the centered 
moving medians remove extreme values, it is called a filtering and the time series 
is much smoother than the original data.

Year Price of Oil

5-point 
Centered 
Moving 
Median

Year Price of Oil

5-point 
Centered 
Moving 
Median

1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

16.74 
17.12 
21.84 
28.48 
19.15 
19.49 
14.19 
17.77 
19.54 
25.90 
17.65 
12.14 
25.76 
26.72 
19.96 
31.21 
32.51 
43.36 

19.15
19.49
19.49
19.15
19.15
19.49
17.77
17.77
19.54
25.76
19.96
25.76
26.72
31.21
32.51
43.36

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

61.06 
60.85 
95.95 
44.60 
79.39 
91.38 
98.83 
91.83 
98.17 
53.45 
37.13 
53.75 
60.46 
45.15 
61.14 
48.52 
75.21 
106.95 

60.85
60.85
61.06
79.39
91.38
91.38
91.83
91.83
91.83
53.75
53.75
53.45
53.75
53.75
60.46
61.14

 [Table 13.2.3] Price of Crude Oil and 5-point Centered Moving Median

  

<Figure 13.2.3>  Price of Crude Oil and 5-point Centered Moving Median
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Ÿ If the value of N is an even number, there is a difficulty in obtaining the central 
moving median having the same number of data on both sides of the base year. 
For example, the center of the four-point moving median from 1987 to 1990 is 
between 1988 and 1989. If you denote this as  , it can be calculated as 
follows:

     
    



 
 

The 4-point moving median obtained in this way is called the non-central 4-point 
moving median. As such, the non-central moving average in the case of this even 
number N does not match the observation year of the original data, which is 
inconvenient. In the case of this even number, it is calculated as the average of 
the values of the two non-central moving averages that are adjacent to each 
other. In other words, the central four-point moving median in 1989 is the mean 
of   and  .

13.3 Transformation of Time Series 

Ÿ Time series can be viewed by drawing the raw data directly, but in order to 
examine various characteristics, change in percentage increase or decrease is 
examined, and an index that is a percentage with respect to base time is alse 
examined. In addition, in order to examine the relation of the previous data, it is 
compared with a time lag or converted into horizontal data using the difference. 
When the variance of the time series increases with time, it is sometimes 
converted into a form suitable for applying the time series model by using 
logarithmic, square root, or Box-Cox transformation.   

13.3.1 Percent

A. Percentage Change

  In a time series, you can examine the increase or decrease of a value, but you 
can easily observe the change by calculating the percentage increase or decrease. 
When the time series is expressed as ⋯ , the percentage increase or 
decrease    compared to the previous data is as follows.

    

    
× ,    

  [Table 13.3.1] shows the number of houses in Korea from 2010 to 2020, and 
<Figure 13.3.1> shows the percentage increase or decrease compared to the 
previous data. Looking at this rate of change, it can be easily observed that the 
original time series has an overall increasing trend, but the rate of change of the 
previous year has many changes. In other words, it can be observed that there 
was a 2.23% increase in the number of houses in 2014 compared to the previous 
year, and a 2.48% increase in the number of houses in 2018 as well.

 

 
×  
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Year Number of Houses % Change

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

17738.8
18082.1
18414.4
18742.1
19161.2
19559.1
19877.1
20313.4
20818.0
21310.1
21673.5

-
1.93
1.83
1.77
2.23
2.07
1.62
2.19
2.48
2.36
1.70

[Table 13.3.1] Number of Houses in Korea and Percent Change
(Korea National Statistical Office, unit 1000)

  

<Figure 13.3.1> Number of Houses in Korea and Percent Change

B. Simple Index

  Another way to use percentages to easily characterize changes over time is to 
calculate an index number. An index number is a number that indicates the 
change over time of a time series. The index number   of a time series at 
a certain point in time is the percentage of the total time series data for a 
predetermined time point   called the base period.

   

 
× ,    

  The most commonly used indices in the economic field are the price index and 
the quantity index. For example, the consumer price index is a price index 
indicating the price change of a set of goods that can reflect the total consumer 
price, and the index indicating the change in total electricity consumption every 
year is the quantity index. There are several methods of calculating the index, 
which are broadly divided into simple index number when the number of items 
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represented by the index is one, and composite index number when there are 
several as in the consumer price index. 
  [Table 13.3.2] is a simple index for the number of houses in Korea from 2010 
to 2020, with the base time being 2010. If you look at the figure for the index, 
you can see that in this case, there is no significant change from the original 
time series and trend. It can be seen that there is a 22.18% increase in the 
number of houses in 2020 compared to 2010.

 


× 


×   ,    

Year Number of Houses Simple Index
Base: 2010

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

17738.8
18082.1
18414.4
18742.1
19161.2
19559.1
19877.1
20313.4
20818.0
21310.1
21673.5

100.00
101.94
103.81
105.66
108.02
110.26
112.05
114.51
117.36
120.13
122.18

[Table 13.3.2] Simple Index of Number of Houses in Korea
(Korea National Statistical Office, unit 1000)

 

<Figure 13.3.2> Simple Index of Number of Houses in Korea

C. Composite Index

  Composite index is a method in which the change in price or quantity of 
several goods is set at a specific time point as the base period, and then the 
data at each time point is calculated as a percentage value compared to the base 
period. An example of the most used composite index is the consumer price 
index, which reflects price fluctuations of about 500 products in Korea that affect 
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consumer prices. Other commonly used composite indices include the 
comprehensive stock index, which examines the price fluctuations of all listed 
stocks traded in the stock market.
  For the composite index, a weighted composite index that is calculated by 
weighting the price of each product with the quantity consumed is often used. 
When calculating such a weighted composite index, the case where the quantity 
consumption at the base time is used as a weight is called the Laspeyres method, 
and the case where the quantity consumption at the current time is used as the 
weight is called the Paasche method. In general, the Laspeyres method of 
weighted composite index is widely used, and the consumer price index is a 
representative example. The price index of the Paasche method is used when the 
consumption of goods used as weights varies greatly over time, and can be used 
only when the consumption at each time point is known. It is expensive to 
examine the quantity consumption at each point in time.
  Assuming that  ⋯   are the prices of  number of products at the 
time point , and 

 ⋯ 
 are the quantities of each product consumpted 

at the base time, the formula for calculating each composite index is as follows:

Laspeyres Index:  


⋯



 ⋯


×

Paasche Index:  
⋯

 ⋯
×   

  The data in [Table 13.3.3] shows the price and quantity of three 
metals by month in 2020.

Month Copper
  Price    Quantity

Metal
  Price    Quantity

Lead
  Price    Quantity Laspeyres     Paasche

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

1361.6    100.7
1399.0     95.1
1483.6    104.0
1531.6     95.6
1431.2    103.3
1383.8    106.9
1326.8     95.9
1328.8     96.7
1307.8     95.7
1278.4     89.1
1354.2    100.5
1305.2     96.9

213     4311
213     4497
213     5083
213     5077
213     5166
213     4565
213     4329
213     4057
213     3473
213     3739
213     3817
213     3694

530.0     46.1
520.0     47.0
529.0     51.0
540.0     23.0
531.0     26.5
580.0     13.5
642.8     27.4
602.6     25.8
513.6     20.5
480.8     24.6
528.4     21.5
462.2     27.9

100.00        100.00
100.31        100.28
101.13        101.01
101.63        101.35
100.65        100.57
100.42        100.27
100.16         99.98
100.00         99.87
 99.43         99.38
 99.01         99.07
 99.92         99.92
 99.18         99.21

[Table 13.3.3]  Composite Index of three Metal Prices($/ton) and Production Quantity(ton)

  In [Table 13.3.3], the Laspeyres index for the data for February with January as 
the base time is as follows.

  ⋯

 ⋯
×

    

  
 

Similarly, Paasche index is as follows:
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  ⋯

 ⋯
×

    

  
 

In [Table 13.3.3], it can be seen that the production quantity of iron and lead in 
the last 4 quarters is significantly different from the production quantity in 
January, which is the base time. In this way, when the quantity fluctuates greatly 
and the quantity at each time is known, the Pasche index can be said to be the 
best index because it appropriately reflects the price change at that time.

13.3.2 Time Lag and Difference

A. Time Lag 

  In a time series, current data can usually be related to past data. Lag means a 
transformation for comparing data of the present time and observation values ​​at 
one time point or a certain past time point. That is, when the observed time 
series is     ⋯   , the time series with lag 1 becomes 
    ⋯     . Note that, in case of lag k, there are no data for the 
first   number than the original data.
  The correlation coefficient between the time lag data and the raw data is 
called the autocorrelation coefficient. If the average of time series is  , the 
-lag autocorrelation   is defined as follows:

 


  







  








 k=0,1,2,⋯,n-1  

    ⋯    are called an autocorrelation function and are used to determine a 
time series model.
  [Table 13.3.4] shows the monthly consumer price index for the past two years 
and time lag 1 to 12 for this data, and the autocorrelation coefficients are shown 
in [Table 13.3.5]. <Figure 13.3.3> shows the original time series and the 
autocorrelation function.



18   /  Chapter 13 Time Series Analysis


time Year/month CPI Lag 1 Lag 2 ... Lag 12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2020.01
2020.02
2020.03
2020.04
2020.05
2020.06
2020.07
2020.08
2020.09
2020.10
2020.11
2020.12
2021.01
2021.02
2021.03
2021.04
2021.05
2021.06
2021.07
2021.08
2021.09
2021.10
2021.11
2021.12

102.3
102.8
103.7
104.1
104.0
104.3
104.5
104.9
104.8
104.8
104.2
104.4
105.0
105.5
106.1
106.7
107.1
107.0
106.7
107.4
108.0
107.7
107.8
108.3

-
102.3
102.8
103.7
104.1
104.0
104.3
104.5
104.9
104.8
104.8
104.2
104.4
105.0
105.5
106.1
106.7
107.1
107.0
106.7
107.4
108.0
107.7
107.8

-
-

102.3
102.8
103.7
104.1
104.0
104.3
104.5
104.9
104.8
104.8
104.2
104.4
105.0
105.5
106.1
106.7
107.1
107.0
106.7
107.4
108.0
107.7

...

-
-
-
-
-
-
-
-
-
-
-
-

102.3
102.8
103.7
104.1
104.0
104.3
104.5
104.9
104.8
104.8
104.2
104.4

[Table 13.3.4] Monthly Consumer Price Index and Time Lag 1, Lag 2, ... Lag 12

t autocorrelation

1
2
3
4
5
6
7
8
9

10
11

 0.8318
 0.6772
 0.5651
 0.4479
 0.3333
 0.2547
 0.1647
 0.0755
-0.0143
-0.0854
-0.1737

[Table 13.3.5] 
Autocorrelation Function
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<Figure 13.3.3> Autocorrelation Function Graph

B. Differencing

  Since the price index in [Table 13.3.4] has a linear trend, a model for this 
trend can be built, but in some cases, a model can be created by changing the 
time series to a horizontal trend. The way to transform a linear trend into a 
horizontal trend is to use a differencing. When the time series is ⋯ , 
the first order difference ∇   is as follows:

∇          , t=2,3,⋯,n

  If the raw data is a linear trend, the first-order differencing of time series is a 
horizontal time series because it means a change in slope. If we make 
differencing on the first-order differencing ∇ , it becomes the second-order 
difference as follows:

∇    ∇   ∇                      ,   ⋯

If the raw data has a trend with a quadratic curve, the second differencing of 
time series becomes a horizontal time series.
  <Figure 13.3.4> shows the first order differencing of [Table 13.3.4] time series 
and it becomes horizontal series.
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<Figure 13.3.4> 1st Order Differencing of Consumer Price Index

13.3.3 Mathematical Transformation

Ÿ If the original data of the time series is used as it is, modeling may not be easy 
or it may not satisfy various assumptions. In this case, we can fit the model we 
want by performing an appropriate functional transformation, such as log 
transformation. The functions commonly used for mathematical transformations are 
as follows.

Log function  log

Square root function 
Square function     

Box-Cox Transformation  












   
 ≠ 

log     

  

Ÿ [Table 13.3.6] is a toy company's quarterly sales, and <Figure 13.3.5> is a diagram 
of this data. It is a seasonal data by quarter, but, as time goes on, dispersion of 
sales increases over time. It is not easy to apply a time series model to data 
with this increasing dispersion over time. In this case, log transformation 
 log can reduce the dispersion as time increases, as shown in <Figure 
13.3.5>, so that a model can be applied. After predicting by applying the model 
to log-transformed data, exponential transformation   exp is performed 
again to predict the raw data.
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t Year Sales

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

2017 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2018 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2019 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2020 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2021 Quarter 1
Quarter 2
Quarter 3
Quarter 4

 38.0
 53.6
 57.5
200.0
 56.5
 75.8
 78.3
269.7
 70.2
 92.7
101.8
332.6
 97.3
123.7
132.9
429.4
138.3
167.6
189.9
545.9

[Table 13.3.6] Quarterly Sales of a Toy 
Company (unit million $)

 

<Figure 13.3.5> Log Transformation of Toy Sales

Ÿ The square root transform is used for a similar purpose to the log transform, and 
the square transform can be used when the variance decreases with time. The 
Box-Cox transform is a general transformation. 

13.4 Regression Model and Forecasting 

Ÿ If there is a trend factor that shows a continuous increase or decrease in the 
time series, the regression model learned in Chapter 12 can be applied. For 
example, if the time series shows a linear trend, the linear regression model is 
applied with the time series as the observation values of the random variable 
    and time as 1, 2, ... ,  as follows.
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   ⋅ 
Here εt is the error term with mean 0 and variance .

A characteristic of the linear model is that it increases by a slope   of a certain 
magnitude over time.

Ÿ When the estimated regression coefficients are   , the validity test of the 
linear regression model is the same as the method described in Chapter 12. The 
standard error of estimate and coefficient of determination are often used. In a 
linear trend model,   represents the degree to which observations can be 
scattered around the estimated regression line at each time point. As an estimate 
of this  , the following standard error is used.

  






  



  
 



A smaller standard error value   indicates that the observed values are close to 
the estimated regression line, which means that the regression line model is well 
fitted.

Ÿ The coefficient of determination is the ratio of the regression sum of squares, 
RSS, which is explained out of the total sum of squares, TSS.

   TSS

RSS

The value of the coefficient of determination is always between 0 and 1, and the 
closer the value is to 1, the more dense the samples are around the regression 
line, which means that the estimated regression equation explains the observations 
well. 

Ÿ As explained in Chapter 12, since it is difficult to determine the absolute criteria 
for adequacy of the standard error or the coefficient of determination, a 
hypothesis test is used to determine whether the trend parameter β1 is zero or 
not.

Hypothesis:        H      , H   ≠ 

Test statistic:     
SE 

 ,  Here  SE  





  



  

  

Rejection region:   If        , reject H  with significance level  .

If the null hypothesis H      is not rejected, the model cannot be 
considered valid.

Ÿ The assumption for error   is tested using the residual, which is the difference 
between the observed time series value and the predicted value which is called 
residual analysis. Residual analysis usually examines whether assumptions about 
error terms such as independence and equal variance between errors are satisfied 
by drawing a scatter plot of the residuals over time or a scatter plot of the 
residuals and predicted values. In the scatterplots, if the residuals do not show a 
specific trend around 0 and appear randomly, it means that each assumption is 
valid. To examine the normality assumption of the error term, draw a normal 
probability plot of the residuals, and if the points on the figure show the shape 
of a straight line, it is judged that the assumption of the normal distribution is 
appropriate.
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Ÿ If the linear regression model is suitable, the predicted value 
 

   ⋅  at the time point   can be interpreted as a point 
estimate for the mean of the random variable 

 at the time point, and the 

confidence interval for the mean of  
 at this time   is as follows:


±   ⋅SE



Here  SE 
  ⋅








  



   

   

Ÿ If the trend is in the form of a quadratic, cubic or higher polynomial, the 
following multiple linear regression model can be assumed.

(Quadratic)     ⋅⋅  
(Cubic)     ⋅⋅ ⋅  

The prediction method is similar to the above simple linear regression model.
Ÿ If the trend is not a polynomial model as above, the following model can also be 

considered.

(Square root)     ⋅  
(Log)     ⋅log  

These models are the same as the linear regression model if I  or log  are 
replaced with a variable   in the simple linear regression and the prediction 
method is similar.

Ÿ In addition, the function types to which the linear regression model can be 
applied by transformation are as follows.

(Power)    ⋅
   

(Exponential)     ⋅
    

In the case of these two models, the parameters should be estimated using the 
nonlinear regression model, but if the error term is ignored, the linear model can 
be estimated approximately as follows:

(Power) log     log  ⋅log

(Exponential)  log     log   

Ÿ Korea's GDP from 1986 to 2021 is shown in [Table 13.4.1]. <Figure 13.4.1> shows 
the application of three regression models to this data. Among these models, the 
quadratic model has the largest value of   = 0.9591, so it can be said that the 
time series is the most suitable model. However, additional validation of the 
model is required.
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Year GDP (billion $)

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

330.65
355.53
392.67
463.62
566.58
610.17
569.76
383.33
497.51
576.18
547.66
627.25
702.72
793.18
934.9

1053.22
1172.61
1047.34
943.67

1143.98
1253.16
1278.43
1370.8

1484.32
1465.77
1499.36
1623.07
1725.37
1651.42
1638.26

[Table 13.4.1] GDP of Korea

 

<Figure 13.4.1> GDP of Korea and Three Regression Model
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13.5 Exponential Smoothing Model and Forecasting 

Ÿ When the time series moves in a trend, the future can be predicted well with 
the regression model. However, it may not be appropriate to predict a time 
series that is dynamically moving hourly, daily, etc. In this case, a moving average 
model or an exponential smoothing model can be used. The time series model is 
explained into two cases where the trend is stationary and linear.

13.5.1 Stationary Time Series

Ÿ A time series is called stationary if the statistical properties such as mean, 
variance and covariance are consistent over time. When a time series is the 
observed values of random variables ⋯ , a stationary time series is 
the following model that changes around a constant value .

       ,    
Here  is unknown parameter and  is an error term which is independent with mean 0 
and variance  .

A. Single Moving Average Model

  In a stationary time series model, the estimated value of , , is the mean of 
the data. .

  


  



 

Using this model, the prediction after   time points ahead at the current time   
denoted as  , is as follows:

    , τ=1,2,⋯
It is called a simple average model. .
  The simple average model uses all observations until the current time. However, 
the unknown parameter  may shift slightly over time, so it would be reasonable 
to give more weight to recent data than to past data for prediction. If a weight 


  is given to only the most recent   observations at the present time   and 

the weight of the remaining observations is set to 0, the estimated value of  is 
as follows.

  



      



    

           ⋯    

This is called a single moving average model at the time point   and is denoted 
by  . The   single moving average means the average of the observations 
adjacent to the time point  . Notice that     are independent of 
each other by assumption, but   are not independent of each 
other, but are correlated.
  The value of the single moving average varies depending on the size of  . 
When the value of   is large, it becomes insensitive to the fluctuations of the 
original time series, so it changes gradually, and when the value of   is small, it 
becomes sensitive to fluctuations. Therefore, when the fluctuation of the original 
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time series is small, it is common to set the small value of  , and when the 
fluctuation is large, it is common to set the value of large  .
  Using the single moving average model at the time point  , the predicted 
value and the mean and variance of the predicted value at the time point    
are as follows.

     ,   ⋯

       

        


  When the single moving average model is used, the 95% confidence interval 
estimation of the predicted value is approximately as follows.

 ±  

=>  ± 





 

  The monthly sales for the last two years of a furniture company are as shown 
in [Table 13.4.2], and the residual between the raw data and the predicted value 
of one point in time was calculated by obtaining a six-point moving average. 
<Figure 13.5.1> shows the time series for this. This time series fluctuates up and 
down based on approximately 95, and such a time series is called a stationary 
time series.
  When   = 6, the moving average for the first 5 time points cannot be 
obtained. The moving average at time 6 is  is as follows:

 

    
 

Therefore, one time prediction at time 6 becomes    and the residual 
at time 7 is as follows:

   
          

In the same way, the moving average of the remaining time points, the predicted 
values ​​after one time point, and the residuals are as shown in [Table 13.5.1], so 
the mean square error is as follows: 

 


  



  
  



 

  Sales for the next three months are the last moving average  , and the 
95% confidence interval for the forecast is as follows:

   
   

      

 ± 





    

=>  ± 




  

=> [90.10, 119.23]

※ Moving average at initial period
   Since the  -point single moving average cannot be obtained before the time 
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point  , the prediction model cannot be applied. When there are many time 
series, this may not be a big problem, but when the number of data is small, it 
can affect the prediction. In order to solve this problem, the moving average at 
initial period can be obtained as follows until the time point   .

   ,      

   ,     

 

⋯
     ,     

  ⋯  

Time
t

Sales
(unit million $)



6-pt Moving 
Average

Mt

One Time 
Forecast


Residual
 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 95
100
 87
123
 90
 96
 75
 78
106
104
 89
 83
118
 86
 86
112
 85
101
135
120
 76
115
 90
 92

98.50
95.17
91.50
94.67
91.50
91.33
89.17
96.34
97.67
94.34
95.67
95.00
98.00

100.84
106.50
104.84
105.34
106.17
104.67

98.50
95.17
91.50
94.67
91.50
91.33
89.17
96.34
97.67
94.34
95.67
95.00
98.00

100.84
106.50
104.84
105.34
106.17

-23.50
-17.17
 14.50
  9.33
 -2.50
 -8.33
 28.83
-10.33
-11.67
 17.67
-10.67
  6.00
 37.00
 19.17
-30.50
 10.17
-15.33
-14.17

[Table 13.5.1] Montly Sales of a Furniture Company and 6-point Moving Average, One 
Time Forecast and Residuals
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<Figure 13.5.1> Montly Sales of a Furniture Company and 6-point Moving 
Average and One Time Forecast

B. Single Exponential Smoothing Model

  In the single moving average model, the same weight 
  is given to only the 

latest   observations, and the previous observations are completely ignored by 
setting the weight to 0. The single exponential smoothing method compensates 
for the shortcomings of the moving average model by assigning weights to all 
observations when predicting future values from past observations, but giving 
more weight to recent data. This single exponential smoothing model uses the 
value of the exponential smoothing method as the predicted value.
 The single exponential smoothing model calculates the weighted average of the 
exponential smoothing estimator   at the immediately preceding time point and 
the observation value   at the time point  . Assuming that the exponential 
smoothing estimated value at the time point   is     and   is a real 
number between 0 and 1, the single exponential smoothing value   is defined 
as follows.

        ,  
        , 
⋯
       , 

Here,   is called the smoothing constant, and the single exponential smoothing 
value is the weighted average value given the weight   of the most recent 
observation and   of the exponential smoothing value     at the time 
  . You can better understand the meaning of exponential smoothing if you 
write down the recursive equation as follows:

       

                
           

              +․․․+ 
      
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In other words, for the single exponential smoothing value  , the most recent 
observation    is given a weight  , and the next most recent observation is 
given  , the next is  ⋯  and so on, a gradually smaller weight. 
Therefore, if the size of   is small, the current observation value is given a small 
weight, and the exponential smoothing value is insensitive to the fluctuations of 
the time series. if the size of   is large, the current observation value is given a 
large weight, and the exponential smoothing value is sensitive to the fluctuations 
of the time series. In general, a value between 0.1 and 0.3 is often used as the 
value of  .
  In order to obtain a single exponential smoothing value, an initial smoothing 
value   is required, and the first observation value or the sample average of 
several initial data or the overall sample average can be used. The exponential 
smoothing method has the advantage of being less affected by extreme point or 
intervention than the ARIMA model and easy to use, although the selection of 
the smoothing constant is arbitrary and it is difficult to obtain a prediction 
interval.
  The predicted value, average and variance of the predicted value at the time 
point    using the single exponential smoothing model are as follows:

     
       

      




Therefore, when the single exponential smoothing model is used, the 95% interval 
estimation in the predicted value is approximately as follows.

 ±  

=>  ± 





  

  To the data of [Table 13.5.1], predict sales for the next three months by a 
single exponential smoothing model with smoothing constant   = 0.1. Let’s use 
the first observed value for the initial value of exponential smoothing, that is   
=   = 95. The exponential smoothing value for the first three time series are as 
follows:

   ×      ×    ×    ×   

   ×      ×    ×    ×     
   ×      ×    ×    ×     

     
At each time point, the prediction after one point in time is as follows:

        
        
        

Hence the residuals using the above estimated values are as follows:

   
         

   
            

   
           



30   /  Chapter 13 Time Series Analysis


In the same way, the single exponential smoothing of the remaining time points, 
the predicted values after one time point, and the residuals are as shown in 
[Table 13.4.2]. Therefore, the mean square error is as follows:

MSE 


i 



Y i 
Y i 



 

In terms of mean square error, the MSE of the 6-point single moving average 
model is 331.22, so it can be said that the exponential smoothing model has 
better fit.
  Sales for the next three months are the last moving average  , and the 95% 
confidence interval for the forecast is as follows:

   
   

      

 ± 





     

=>  ± 





  

=> [65.27, 132.05]

[Table 13.5.2] summarizes the above equations, and <Figure 13.5.2> shows the 
prediction after one time point and the prediction for the next 3 months using 
the single exponential smoothing model with   = 0.1.

Time
t

Sales
(unit million $)



Exponential 
Smoothing

St

One Time 
Forecast


Residual
 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 95
100
 87
123
 90
 96
 75
 78
106
104
 89
 83
118
 86
 86
112
 85
101
135
120
 76
115
 90
 92

 95.00
 95.50
 94.65
 97.48
 96.74
 96.66
 94.50
 92.85
 94.16
 95.15
 94.53
 93.38
 95.84
 94.86
 93.97
 95.77
 94.70
 95.33
 99.29
101.36
 98.83
100.45
 99.40
 98.66

 95.00
 95.00
 95.50
 94.65
 97.48
 96.74
 96.66
 94.50
 92.85
 94.16
 95.15
 94.53
 93.38
 95.84
 94.86
 93.97
 95.77
 94.70
 95.33
 99.29
101.36
 98.83
100.45
 99.40

  0.00
  5.00
 -8.50
 28.35
 -7.48
 -0.74
-21.66
-16.50
 13.15
  9.84
 -6.15
-11.53
 24.62
 -9.84
 -8.86
 18.03
-10.77
  6.30
 39.67
 20.71
-25.36
 16.17
-10.45
 -7.40

[Table 13.5.2] Exponential Smoothing with α = 0.1, One Time Forecast and Residual
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<Figure 13.5.2> Exponential Smoothing with α = 0.1 and One Time 
Forecast 

※ Initial value of exponential smoothing
  Since the initial exponential smoothing value at the time point     cannot 
be obtained, the following three methods are commonly used.

1) The first observation, i.e.    ,
2) Partial average using the initial  observation values, that is 

     


  ⋯ ,

3) The mean up to the entire time point  , i.e.,

     

  ⋯ 

※ Initial smoothing constant
  The same smoothing constant   can be applied to all time series, but the 
following method is also used to reduce the effect of the initial value  .

  


 , until   reaches   

13.5.2 Linear Trend Time Series

A. Double Moving Average Model

  In the previous section, we examined that the single moving average model can 
be applied to a stationary time series. What would happen if the single moving 
average model was applied to a time series with a linear trend? That is, for a 
time series with a linear trend      ⋅   , the  -point single 
moving average at time   is as follows:

  

            ⋯    

The expected value can be shown as follows:
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    

 
  

That is, in the case of a linear trend model, it can be seen that the single 

moving average   is biased by 


 . For example, if the consumer price 

index with a linear trend in [Table 13.5.3] is predicted after one point in time 
using the 5-point single moving average, it is as shown in <Figure 13.5.3>. It can 
be seen that the predicted value using   is under estimated value of the time 
series .

  

<Figure 13.5.3> 5-pt Moving Average of Consumer Price Index with Linear 
Trend

In the case of a linear trend, one way to eliminate the bias of the single moving 
average model is the double moving average, which obtains the moving average 
again for the single moving average. The  -point double moving average 

  
at the time   and its expected value are as follows.


   


    ⋯        


            

  Since   and 
 have the same number of parameters,     can 

be estimated by solving the system of two equations as follows: 

 


 

  

   
 

Therefore, the predicted value at the time point    using the double moving 
average at time   as follows.

   
  

   


  Such a double moving average model can be said to be a kind of heuristic 
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method. That is, although logical, it is not based on any optimization such as 
least squares method. However, it can be approximated by the least-squares 
method, which we will omit in this book.
  [Table 13.5.3] is a calculation table for predicting the consumer price index 
using the 5-point double moving average model. Note that the third column is a 
5-point single moving average   , but the single moving average cannot be 
calculated from time points 1 to 4. The fourth column is the calculation of the 
5-point double moving average 

  , but the double moving average cannot be 
calculated until 5 single moving averages have been calculated, that is, from time 
points 1 to 8. Using   and 

   to obtain the prediction after time 1 from 
time 9,     is as follows:

     
   

   
 

      ×     

      

The predicted values calculated in the same way are shown in the fifth column.

Time
t

Consumer 
Price Index



5-pt Single 
Moving Average



5점 Double 
Moving Average




One Time 
Forecast


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

102.3
102.8
103.7
104.1
104.0
104.3
104.5
104.9
104.8
104.8
104.2
104.4
105.0
105.5
106.1
106.7
107.1
107.0
106.7
107.4
108.0
107.7
107.8
108.3

103.38
103.78
104.12
104.36
104.50
104.66
104.64
104.62
104.64
104.78
105.04
105.54
106.08
106.48
106.72
106.98
107.24
107.36
107.52
107.84

104.028
104.284
104.456
104.556
104.612
104.668
104.744
104.924
105.216
105.584
105.972
106.36
106.7

106.956
107.164
107.388

105.2080
105.2240
104.9160
104.7160
104.6820
104.9480
105.4840
106.4640
107.3760
107.8240
107.8420
107.9100
108.0500
107.9660
108.0540

[Table 13.5.3] Double Moving Average of Consumer Price Index and One Time Forecast
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<Figure 13.5.4> Forecast using Double Moving Average of Consumer Price 
Index 

B. Holt Double Exponential Smoothing Model

  Holt proposed a model for a linear time series      ⋅    
which uses a smoothing constant for the level and a smoothing constant for the 
trend. This is called Holt's linear trend exponential smoothing model or 
two-parameters double exponential smoothing model. Let    and    be the initial 
values of the intercept and slope, and   be the smoothing constant of the level 
and  is the smoothing constant of the trend. The predicted values   , level 
  and trend   are as follows:  

Predicted value:  
 ,   ⋯

Level:               ⋯

Trend:            ,    ⋯

That is, the level is the weighted average of the current observed value    and 
the predicted value  , and the trend is the weighted average of the level 
difference     between the time points   and ( ) and the trend 
   at the time point (t-1). For this model, initial values of level   
and slope   are required and the intercept and slope of the simple 
regression analysis of all observed values are widely used as initial estimates. 
Similar to the single exponential smoothing model, a value between 0.1 and 0.3 is 
often used to determine the smoothing constants   and  . 
  The predicted values for the time point    at time   using the trend 
exponential smoothing model are as follows:

  
    

  Such a trend exponential smoothing model is also a kind of heuristic method. 
That is, although logical, it is not based on any optimization such as least squares 
method.

The result of simple linear regression model to all data in [Table 13.5.4] is
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as follows:
  
     

[Table 13.5.4] is a calculation table for predicting the consumer price index with 
the Holt double exponential smoothing model using this initial values. The third 
column is the predicted value of the level  , the fourth column is the trend 
 , and the fifth column is the prediction  

  obtained 
one time after each time point. Therefore, the forecast of the consumer price 
index for the next three months is as follows:

t = 25 : 
   ×     

t = 26 : 
   ×  ×   

t = 27 : 
   ×  ×       

[

Time
t

Consumer 
Price Index



Constant


Trend


One Time 
Forecast


0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

102.3
102.8
103.7
104.1
104.0
104.3
104.5
104.9
104.8
104.8
104.2
104.4
105.0
105.5
106.1
106.7
107.1
107.0
106.7
107.4
108.0
107.7
107.8
108.3

102.57
102.76
102.97
103.25
103.54
103.80
104.07
104.33
104.61
104.85
105.07
105.20
105.33
105.50
105.70
105.93
106.20
106.49
106.75
106.96
107.21
107.50
107.73
107.95
108.20

0.234
0.229
0.227
0.232
0.239
0.241
0.243
0.245
0.249
0.248
0.245
0.234
0.224
0.218
0.216
0.218
0.223
0.230
0.233
0.230
0.232
0.238
0.237
0.236
0.237

102.81
102.99
103.20
103.48
103.78
104.04
104.31
104.58
104.86
105.10
105.31
105.44
105.56
105.72
105.91
106.15
106.43
106.72
106.98
107.19
107.44
107.73
107.97
108.19

[Table 13.5.4]  Forecasting using Holt Double Exponential Smoothing Model of 
Consumer Price Index

<Figure 13.5.5> shows the predicted values using the Holt’s double
exponential smoothing model.
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<Figure 13.5.5>  Forecasting using Holt Double Exponential Smoothing 
Model of CPI

13.6 Seasonal Model and Forecasting 

Ÿ As a seasonal time series model, a multiplicative model using a central moving 
average and a Holt-Winters model are introduced.

13.6.1 Seasonal Multiplicative Model

Ÿ Assume that a time series    with a seasonal period   can be expressed as the 
product of a trend ( ), a seasonal ( ), and an irregular component () as 
follows:

  ⋅⋅ .

Ÿ The ratio to moving average method removes the trend and irregular components 
to obtain the seasonal component as follows

(Step 1) For the time series, find the  -point centered moving average. This 
moving average represents the trend component   after removing seasonal 
component and irregular component from the time series.
 
(Step 2) Divide the time series    by the trend component   obtained in Step 
1. This value implies the seasonal component and the irregular component 
⋅ , and is called the seasonal ratio. 




 ⋅

(Step 3) Calculate the trimmed average for each seasonal ratio obtained in Step 
2. This is the seasonal index, but the normalization should be performed so that 
the sum of the seasonal indices is  .
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Ÿ After obtaining the seasonal index as shown, dividing the original time series data 
by the seasonal index. The results is called a deseasonal time series.

Deseasonal time series:   


 

Ÿ This deseasonal time series   implies  . An appropriate time series model is 
applied to this deseasonal data and predict the future vaules. Then multiply the 
corresponding seasonal index to obtain the final predicted value of the desired 
season.

Ÿ [Table 13.6.1] shows a company's quarterly sales. Since the seasonal period is 4, 
the 4-point centered moving average is as shown in column 4 of the table. By 
dividing the original time series by a 4-point centered moving average, the 
seasonal ratio in column 5 can be calculated. 




 ⋅

①

Year  Quarter

②
Sales


③

4-point 
MA

④
Centered
4-point 

MA

⑤
Seasonal 

Ratio

⑥
Deseasonal 

Data 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2018 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2019 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2020 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2021 Quarter 1
Quarter 2
Quarter 3
Quarter 4

75
60
54
59
86
65
63
80
90
72
66
85

100
78
72
93

62.000
64.750
66.000
68.250
73.500
74.500
76.250
77.000
78.250
80.750
82.250
83.750
85.750

63.375
65.375
67.125
70.875
74.000
75.375
76.625
77.625
79.500
81.500
83.000
84.750

0.852
0.902
1.281
0.917
0.851
1.061
1.175
0.928
0.830
1.043
1.205
0.920

62.552
65.502
63.754
56.840
71.726
70.961
74.380
77.071
75.063
78.603
77.922
81.888
83.403
85.153
85.006
89.595

[Table 13.6.1] Quarterly Sales of a Company

Ÿ [Table 13.6.2] shows the seasonal ratio by year and quarter. If the maximum and 
minimum values are removed for each quarter and the average is obtained 
(trimmed  average), it is the seasonal index in column 6. Since the sum of these 
values is 4.0197, the seasonal index in column is normalized as in column 7. 

  = 1.199,   = 0.916,   = 0.847,   = 1.038
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  ①
       Year
Quarter

②

2018

③

2019

④

2020

⑤

2021

⑥
Trimmed 
Mean of 
Seasonal 

Ratio

 ⑦
Seasonal 

Index
St

1st Quarter
2nd Quarter
3rd Quarter
4th Quarter

0.852
0.902

1.281
0.917
0.851
1.061

1.175
0.928
0.830
1.043

1.205
0.920

1.205
0.920
0.851
1.043

1.199
0.916
0.847
1.038

sum
  4.019 

[Table 13.6.2] Seasonal Index

  Column 6 of [Table 13.6.1] shows the non-seasonal data   obtained by 
dividing the original data by the seasonal index of each quarter. The linear 
regression line for this non-seasonal data is as follows (<Figure 13.6.1>).,

     

Therefore, the forecast for the next one year is as follows.

    Time 17 :      ××  

    Time 18 :      ××  

    Time 19 :      ××  

    Time 20 :      ××  

  <Figure 13.6.2> is a graph of seasonal forecasts.

 

<Figure 13.6.1> Linear Forcasting Model of Deseasonal Sale
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<Figure 13.6.2>  1 Year Forcasting of Quarterly Sales

13.6.2 Holt-Winters Model

Ÿ Assume that a time series with a seasonal period   is observed over   cycles  
as follows:

          Season 1  Season 2     …       Season L
-----------------------------------------------------------------------------------------------
 Cycle 1                     …   

 Cycle 2                   …   

        …         …       …
 Cycle m         …   
-----------------------------------------------------------------------------------------------

Ÿ The Holt-Winters model is an extension of Holt's linear double exponential 
smoothing method studied in the previous section to a seasonal model. It consists 
of a level component  , a trend component  , and a seasonal component  . 
There are additive model and multiplicative model, but only the multiplication 
model is introduced here.

      ⋅       

       


         

              

           


    

Here   is integer part of  

  is a time series level, which means the exponential smoothing of the current 

level (  

  ) with seasonality removed and the value predicted one time ago 

       .   is the slope which is the exponential smoothing of the slope of 
the current time point       and the previous time point (   ).   is a 
seasonal index which is the exponential smoothing of the current seasonal 
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component (      

 ) and the seasonal component of the previous season 

   .
Ÿ [Table 13.6.3] calculates exponential smoothing values of level, slope, and seasonal 

indices using the Holt-Winters model with   = 0.3,   = 0.3,  = 0.3 to the 
quarterly sales of a company. The last column is one time prediction at time 
 , . The initial values and  are the intercept and slope of the 
linear regression model for all data, and the initial values of the seasonal index 
are calculated by the model   ××.

Year  Quarter
Sales


Level


Slope


Seasonal


One Time 
Forecast

-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2018 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2019 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2020 Quarter 1
Quarter 2
Quarter 3
Quarter 4

2021 Quarter 1
Quarter 2
Quarter 3
Quarter 4

75
60
54
59
86
65
63
80
90
72
66
85
100
78
72
93

61.2
62.7312
64.6753
65.5795
63.9809
66.7081
68.7061
71.6766
75.7320
76.5997
78.2283
79.2477
81.6382
83.2158
84.7427
86.0501
88.4618

1.61
1.5863
1.6937
1.4568
0.5402
1.1963
1.4368
1.8969
2.5445
2.0414
1.9176
1.6481
1.8708
1.7829
1.7061
1.5865
1.8341

1.1991
0.9159
0.8472
1.0378
1.1976
0.9210
0.8371
0.9905
1.2382
0.9319
0.8555
1.0195
1.2117
0.9270
0.8459
1.0289
1.2074
0.9242
0.8420
1.0386

75.315
58.908
56.230
69.570
77.270
62.539
58.720
72.874
96.920
73.282
68.561
82.477

101.184
78.791
73.124
90.169

[Table 13.6.3] Holt-Winters Forecasting Model of Quarterly Sales 

Ÿ <Figure 13.6.3> is the Holt-Winters forecast for the next one year and is 
calculated as follows:

     ×  ⋅    ×  
     ×  ⋅    ××  
     ×  ⋅    ××  
     ×  ⋅    ××  
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<Figure 13.6.3> Holt-Winters Forecasting of Quarterly Sales 
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Exercise  

For the next exercise (13.1 – 13.4), draw graph of the time series data, Apply an 
appropriate smoothing method and transformation, find an appropriate prediction 
model to predict the next year.

13.1 The following table provides data on the number of items damaged in shipment during 2001 - 
2014 for a manufacturer.

        

Year Items Year Items

2001 
2002 
2003 
2004 
2005 
2006 
2007 

533
373
132
555
168
281
175

2008
2009
2010
2011
2012
2013
2014

291
228
204
349
234
209
176

13.2 The following table shows the sales volume (in thousands of dollars) of a retail store between 
2001-2014.

        

Year Sales Year Sales

2001 
2002 
2003 
2004 
2005 
2006 
2007 

   815
 1,276 
 4,752 
 7,535 
10,122 
 9,642 
14,100 

2008
2009
2010
2011
2012
2013
2014

 12,529
 12,824
 13,777
 15,379
 18,705
 17,632
 16,571

13.3 The following table shows the number of items repaired during a company's warranty period 
between 2001 and 2014.

        

Year Items Year Items

2001 
2002 
2003 
2004 
2005 
2006 
2007 

749
709
700
678
611
641
631

2008
2009
2010
2011
2012
2013
2014

611
600
574
559
543
534
524

13.4 The following table shows the annual sales (unit: billion $) of a company for 11 years.
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Year Sales Year Sales

2012
2013
2014
2015
2016
2017

12
14
18
20
18
16

2018
2019
2020
2021
2022

20
22
27
24
30

13.5 The following data show the price of silver and crude oil between 2000 and 2015, respectively. 
Find the percentage change of silver and crude oil and the price indices and overlay them on one 
picture.

      

Year Silver Crude Oil Year Silver Crude Oil
(＄/ounce) (＄/barrel)

2000
2001
2002
2003
2004
2005
2006
2007

1.771 
1.546 
1.684 
2.558 
4.708 
4.419 
4.353 
4.620 

 1.80
 2.18
 2.48
 5.18
10.46
11.51
11.51
12.70

2008
2009
2010
2011
2012
2013
2014
2015

 5.440
11.090
20.633
10.481
 7.950
11.439
 8.141
 6.192

15.40
18.00
28.00
32.00
34.00
30.00
26.00
26.00

13.6  The following table shows the number of skis sold by a sports merchandise seller in 2017-2021.
    1) Predict the next year with a multiplicative seasonal model.
    2) Predict the next year using the Holt-Winters seasonal model.

     

Year 1 2 3 4 5 6 7 8 9 10 11 12
2017
2018
2019
2021
2021

 0 
 3 
 9 
13 
 4 

 2
 0
 2
 4
12

10 
 5 
46 
56 
 6 

 4 
 4 
11 
30 
10 

 89 
 14 
 14 
 90 
 17 

33
23
30
20
32

11
 7
22
15
24

 4 
 11
  4
 11
  9

17
11
7
6

10

5
4
4
5
5

17
4
0
1

17

0
8
2
7
1


